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Elien Bellon - Metacognition counts too.  

The role of metacognition in arithmetic development: Evidence from behaviour and brain. 

Dissertation submitted to obtain the degree of Doctor in Educational Sciences, 2020. 

Supervisor: Prof. dr. Bert De Smedt – Co-Supervisor: Prof. dr. Wim Fias 

 

Arithmetic performance and development in children is characterized by large individual differences. 

Understanding what is associated with and/or drives these individual differences is of the essence, as arithmetic is 

hugely important in children’s educational development and, more generally, in many aspects of modern life. 

Rightfully so, a large body of research has investigated the correlates of arithmetic performance and development. 

Important processes such as numerical magnitude processing and executive functions have been put forward. Yet, 

their unique contribution to arithmetic is not fully understood, as these processes are generally studied in isolation. 

The aim of the current dissertation was to further our understanding of these correlates of arithmetic by 

investigating different cognitive, metacognitive and affective processes in concert. The critical contribution of this 

dissertation was the inclusion of metacognition and thorough investigation of metacognitive monitoring in this 

context, which has been mostly overlooked in the existing literature.  

Firstly, we ran a longitudinal panel study in primary school children that examined the unique roles of numerical 

magnitude processing, executive functions and metacognition in second grade, in third grade and over 

development between second and third grade. The results revealed that, over and above the role of numerical 

magnitude processing and executive functions, metacognitive monitoring was associated with performance in both 

early and middle primary school and predicted later arithmetic performance. Its role in predicting arithmetic 

development, taking into account prior arithmetic performance, needs further investigation. 

In a next study, we first investigated the interrelations between metacognitive monitoring and mathematics anxiety, 

to then examine whether their interplay influenced the concurrent and longitudinal associations that were found 

between metacognitive monitoring and arithmetic. Our findings indicate that, while mathematics anxiety was 

related to both metacognitive monitoring and arithmetic, the association between metacognitive monitoring and 

arithmetic was unique and specific, without mediation or moderation of mathematics anxiety. 

The fourth study addressed the currently debated extent to which metacognitive monitoring is domain-specific or 

reflective of a more general performance monitoring process. Investigating this in highly relevant academic 

domains in primary school children, we found that more domain-general metacognitive monitoring processes 

emerge over the ages from 7 to 9. 

Finally, in a fifth study, we uncovered the neurobiological basis of metacognitive monitoring in children. We 

demonstrated that brain activity during metacognitive monitoring increased in de left inferior frontal gyrus and 

correlated with arithmetic performance. We provided the first empirical evidence in favour of the hypothesis that 

prefrontal cortex activity during arithmetic is related to the higher-order process of metacognitive monitoring. 

Collectively, these studies demonstrated the importance of metacognitive monitoring of accuracy for arithmetic 

performance and development in primary school children, while confirming the role of numerical magnitude 

processing and mathematics anxiety, and to a lesser extent executive functions. The current dissertation thus 

furthered our understanding of the correlates of arithmetic. Its critical contribution was uncovering the role of 

metacognition on top of other crucial processes, and as such emphasizing that ‘metacognition counts too’.   
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De rekenprestatie en –ontwikkeling van kinderen wordt gekarakteriseerd door grote individuele verschillen. 

Het goed begrijpen van wat samenhangt met deze individuele verschillen en/of wat deze individuele verschillen 

drijft, is essentieel gezien het uitermate groot belang van rekenen in de schoolse ontwikkeling, en in het algemeen 

in verscheidene aspecten van ons moderne, dagelijkse leven. Een omvangrijke onderzoeksliteratuur heeft dan ook 

terecht de correlaten van rekenprestaties en –ontwikkeling onderzocht. Het belang van processen zoals getalgevoel 

en executieve functies werd reeds benadrukt. Hun unieke bijdrage tot rekenen is echter nog niet volledig duidelijk, 

aangezien deze processen meestal onafhankelijk van elkaar worden bestudeerd. Het doel van dit proefschrift was 

om ons begrip van deze correlaten van rekenen te bevorderen, door verschillende cognitieve, metacognitieve en 

affectieve processen gezamenlijk te onderzoeken. De kritische bijdrage van dit proefschrift is het includeren van 

metacognitie in deze onderzoekslijn en het diepgaand onderzoeken van metacognitieve monitoring. Dit werd 

immers veelal over het hoofd gezien in de bestaande literatuur. 

In een longitudinale studie bij lagere school kinderen werd de unieke rol van getalgevoel, executieve functies 

en metacognitie onderzocht in het tweede leerjaar, het derde leerjaar en overheen de ontwikkeling tussen tweede 

en derde leerjaar. Onze resultaten toonden aan dat metacognitieve monitoring, bovenop de rol van getalgevoel en 

executieve functies, samenhangt met prestatie in het begin en in het midden van de lagere school, en latere 

rekenprestatie voorspelt. Er is nood aan verder onderzoek naar de voorspellende rol van metacognitieve monitoring 

voor de ontwikkeling van rekenen, bovenop wat voorspeld wordt door eerdere rekenprestatie. 

In een volgende studie onderzochten we eerst de onderlinge samenhang tussen metacognitieve monitoring en 

rekenangst, om daarna te bestuderen of deze wisselwerking een invloed heeft op de samenhang die we vonden 

tussen metacognitieve monitoring en rekenen. De resultaten toonden aan dat, hoewel rekenangst weldegelijk 

samenhangt met zowel metacognitieve monitoring als rekenen, de onderlinge samenhang tussen metacognitieve 

monitoring en rekenen niet gedreven of beïnvloed wordt rekenangst. 

Een vierde studie richtte zich op het huidige debat over de mate waarin metacognitieve monitoring domein-

specifiek is, dan wel een meer domein-algemeen monitoring proces weerspiegelt. We onderzochten dit in zeer 

relevante academische domeinen bij lagereschoolkinderen en vonden dat meer domein-algemene metacognitieve 

monitoring processen ontluiken tussen de leeftijd van 7 tot 9 jaar. 

Tenslotte, in een vijfde studie achterhaalden we de neurobiologische basis van metacognitieve monitoring bij 

kinderen. We toonden aan dat hersenactiviteit tijdens metacognitieve monitoring toenam in de linker inferieur 

frontale gyrus en correleerde met rekenprestatie. Daarmee verschaften we de eerste empirische evidentie voor de 

hypothese dat prefrontale activiteit tijdens rekenen samenhangt met het hogere orde proces metacognitieve 

monitoring. 

Het geheel van deze studies beklemtoont het belang van metacognitieve monitoring van accuraatheid voor 

rekenprestaties en –ontwikkeling en bevestigt tegelijk de rol van getalgevoel en rekenagst, en in mindere mate 

executieve functies. Zodoende bevordert dit proefschrift ons begrip van de correlaten van rekenen. De cruciale 

meerwaarde van dit doctoraat is het aantonen van de rol van metacognitie bovenop andere cruciale processen, en 

aldus het benadrukken dat ‘metacognitie ook telt.’ 
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1 Chapter 1 

General Introduction & Aims 

 

Arithmetic is where  

the answer is right and everything is nice and you can look out of the window and see the blue sky-  

or the answer is wrong and you have to start over and try again and see how it comes out this time.  

– C. Sandburg  

From a very young age, children are surrounded by arithmetic: Starting in primary school, arithmetic 

represents an important part of their curriculum, and even after school, children use arithmetic day in, 

day out to calculate the number of sweets they have compared to a sibling or to make sure they receive 

the promised screen time. This omnipresence of arithmetic continues throughout adulthood as we adjust 

recipes to fit the number of people at dinner, calculate how delayed our train or plane is, and figure out 

if the end of season sale is worthwhile. 

Arithmetic, i.e. the ability to mentally manipulate numbers, including addition, subtraction, 

multiplication and division, and its development have been major topics in research for numerous 

decades, studied in numerous research groups all around the world and from the perspective of numerous 

disciplines. Insight into arithmetic performance and development is of interest to not only educators, 

psychologists and educational scientists, neuroscientists, educational policy makers, or mathematicians, 

but in general, to all who need to learn arithmetic and to deal with numbers (Dowker, 2019c). 

An extensive body of literature demonstrates that there are large individual differences in the way 

children acquire arithmetic abilities (e.g. Berch et al., 2016; Dowker, 2005, 2019c). In modern society, 

arithmetic skills are crucial abilities, related to job prospects, income and quality of life (e.g. Ancker & 

Kaufman, 2007; Finnie & Meng, 2001; Gerardi et al., 2013) and early individual differences in 

mathematics, including arithmetic, predict later adult socioeconomic status (e.g. Chiswick et al., 2003; 

Ritchie & Bates, 2013). Because there are such large individual differences in arithmetic abilities and 

because this skill has such a central role in modern society, it is not surprising that there is a long-

standing tradition in developmental and educational research devoted to uncovering the cognitive 

correlates of arithmetic performance and development, and eventually, to developing ways to intervene 

in and/or stimulate arithmetic. Rightfully so, during the last decade, there has been a boost in behavioural 

and neuroimaging research on numerical cognition seeking to identify important predictors of 

mathematics, and in particular arithmetic performance (e.g. Dowker, 2019c; Gilmore et al., 2018a).  

This doctoral dissertation aimed to contribute to this body of research by investigating the role of 

different cognitive and affective, and in particular metacognitive processes in individual differences in 

arithmetic performance and development. In this general introduction, first, I discuss the choice for 
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arithmetic as mathematical domain of interest. Second, the different cognitive, metacognitive and 

affective processes that were investigated within this dissertation are discussed, elucidating the nature 

of these processes, their association with arithmetic performance and development, and how these 

processes are (generally) measured, while standing still at shortcomings or gaps of the existing literature. 

Next, I consider two important issues for research on cognitive, metacognitive and affective processes 

associated with arithmetic in primary school children. These concern the importance of investigating 

different cognitive, metacognitive and affective processes in concert, and the importance of investigating 

the interrelations between these developing processes longitudinally, taking into account prior 

performance. Subsequently, I elucidate the specific focus on metacognitive monitoring within this 

dissertation and discuss two important issues regarding the association between metacognitive 

monitoring and arithmetic that were tackled. More specifically, I will discuss why considering the role 

of mathematics anxiety within the association between metacognitive monitoring and arithmetic is 

warranted, and whether this association is specific to the arithmetical domain or whether it fits into a 

more general role of metacognitive monitoring in academic performance. Thereafter, I consider why 

including brain-imaging research techniques adds value to the existing literature on metacognitive 

monitoring and arithmetic in primary school children. The penultimate section focusses on several 

critical methodological aspects of the current dissertation. The introductory chapter ends with a 

disclosure of the concrete aims and the outline of this doctoral dissertation. 

 

1 Why focus on arithmetic? 

Mathematics is a complex, multidimensional skill that includes different domains (e.g. arithmetic, 

word problem solving, geometry, algebra), and within these domains, different skills. For instance, 

arithmetic comprises the use of different strategies (i.e. fact retrieval versus various procedural 

strategies) and includes different operations (e.g. addition, multiplication). As a result of the extensive 

research into mathematical performance and development, numerous processes have been identified as 

being associated with or predictive of mathematical performance (e.g. Berch et al., 2016; Campbell, 

2005; Cappelletti & Fias, 2016; Geary, 1994). These include numerical magnitude processing (e.g. 

Schneider et al., 2017), executive functioning (e.g. Bull & Lee, 2014), metacognition (e.g. Schneider & 

Artelt, 2010), and mathematics anxiety (e.g. Mammarella et al., 2019). 

Most studies in this research area have used general mathematical tests (De Smedt et al., 2013), 

which often yield a total score that reflects performance averaged across various mathematical domains. 

Furthermore, the content of these general tests may differ substantially depending on, for example, the 

specific test used, the age range for which it was designed, or the country in which a general test was 

administered. As a result, these general achievement tests differ in the mathematical skills they measure. 

The observed pattern of associations between these general tests and other (meta)cognitive and affective 

processes (such as numerical magnitude processing or executive functions) is thus determined by the set 
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1 
of mathematical skills included in these general mathematics tests. The use of total scores and the 

differences in mathematical content in these general tests make it functionally unclear how other 

(meta)cognitive and affective processes are involved in mathematical subdomains. 

Importantly, as different mathematical subdomains are highly diverse, one could argue that not all 

aspects of mathematical performance are associated with these other processes or at least not to the same 

extent (e.g. Cragg & Gilmore, 2014, for a critical discussion). Indeed, the role of different processes in 

mathematical performance has been shown to change as a function of mathematical domain under 

investigation. For example, this has been demonstrated for the roles of numerical magnitude processing 

(Schneider et al., 2017) and working memory (Peng et al., 2016), but also for inhibition, as Gilmore and 

colleagues (2015) found different associations between inhibition and specific components of 

mathematics. Therefore, instead of using general mathematics achievement tests, which include diverse 

mathematical domains, investigating specific mathematical skills is essential to obtain a deeper, more 

nuanced understanding of the precise role of (meta)cognitive and affective processes associated with or 

predictive of mathematical performance and development. 

In the current doctoral project, the focus lays on arithmetic as the mathematical domain of interest. 

The decision to focus my research specifically on arithmetic was driven by several characteristics of 

arithmetic that make it an essential subdomain for which it is critical to investigate (meta)cognitive and 

affective processes related to or predictive of performance and development. Firstly, arithmetic is a core 

element of primary school children’s curriculum and thus key to their early academic success. Secondly, 

arithmetic represents a major building block for children’s development of more complex mathematical 

abilities (e.g. Geary et al., 2012; Kilpatrick et al., 2001). Thirdly, difficulties in arithmetic have been 

considered to be the hallmark of children with dyscalculia (American Psychiatric Association, 2013). 

More broadly, as was discussed above, arithmetic is an important area of study because of the 

omnipresence of arithmetic in children’s and adult’s daily lives and the major impact of arithmetical 

ability and the ability to efficiently process numerical information later in life (e.g. Gerardi et al., 2013). 

Taken together, these characteristics of arithmetic performance and development make it crucial to 

understand the processes underlying individual differences in children’s arithmetic performance. This 

understanding is educationally relevant because it might help develop effective instructional approaches 

and might contribute to designing scientifically validated remediation programs for children at risk for 

or with difficulties in arithmetic and mathematical performance in general.  
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2 Processes arithmetic counts on 

A multitude of processes that are associated with or predictive of arithmetic performance and 

development have been identified in the vast body of existing research (e.g. Dowker, 2019c). These 

processes are not only cognitive in nature, but also include affective, educational, social, and cultural 

processes. For example, arithmetic relies on a good understanding and manipulation of numbers, e.g. 

the cognitive process numerical magnitude processing (Schneider et al., 2017), but is also influenced by 

affective processes, such as mathematics anxiety (e.g. Dowker, 2019e). Another example is the 

educational context in which arithmetic is taught (e.g. Campbell & Xue, 2001; Opdenakker & Van 

Damme, 2007), as different didactic approaches may influence arithmetic development, e.g. emphasis 

on rote memorization of arithmetic facts versus focus on conceptual understanding (Schoenfeld, 2004).  

The current doctoral project, and by extension the existing research on arithmetic, does not 

exhaustively investigate all these important influencing processes in concert. Yet, it is essential to always 

keep in mind that performance and individual differences in arithmetic are influenced by a multitude of 

diverse interacting processes at multiple levels. As will be outlined in the remainder of this general 

introduction, the current project therefore investigates the interplay of diverse processes (i.e. cognitive, 

metacognitive and affective processes) and uses different methodological and analytical frameworks 

(i.e. behavioural methods and neuro-imaging methods). 

In what follows, an overview will be given of processes that have been identified as important for 

arithmetic. First, a conceptual clarification of the use of the terms ‘domain-general’ and ‘domain-

specific’ processes in this dissertation will be presented. Thereafter, the key processes of which their 

role in arithmetic was investigated within this dissertation are discussed, namely numerical magnitude 

processing, executive functions, metacognition, and mathematics anxiety. 

2.1 Domain-general vs domain-specific processes 

To successfully solve arithmetic problems, children need to be able to understand the problem, select 

an appropriate strategy for that problem and, eventually, perform that strategy accurately and efficiently. 

To do this, they not only need domain-specific mathematical knowledge and skills, i.e. processes 

specifically relevant for learning a particular academic skill, such as numerical magnitude processing. 

The involvement of other, more domain-general processes, i.e. processes relevant for learning various 

academic skills, such as executive functions, are also essential. Indeed, besides differentiating between 

categories of processes (e.g. cognitive, affective), research has also distinguished between domain-

general processes and domain-specific processes (e.g. Geary & Moore, 2016; Vanbinst & De Smedt, 

2016a).  

One can argue, however, that using the labels ‘domain-general’ and ‘domain-specific’ might not be 

ideal, as they may sometimes be misleading. All processes may be general or specific to a certain extent, 

yet labelling them as ‘domain-general’ or ‘domain-specific’ may give the impression that a particular 
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process is in fact either domain-general or domain-specific. While a strict distinction between the two 

is theoretically appealing, a nuanced use of these terms seems warranted. More specifically, the role of 

a domain-general process, for instance, may differ quantitatively and/or qualitatively depending on the 

domain it is measured in. For example, while inhibition may be an important process within both 

mathematics (e.g. Gilmore et al., 2015) and reading (e.g. Borella et al., 2010), it may play a stronger 

role in one of them, or it may be of importance in some aspects of, for instance, mathematics, and not 

(so much) in others (e.g. Gilmore et al., 2015). Moreover, inhibition skills in one domain may not 

necessarily be related to inhibition in another domain (e.g. Bellon et al., 2016) and consequently, a 

domain-general process may show some domain-specificity. On the other hand, a domain-specific 

process, while mostly important for a particular skill, may still play a role within other domains. For 

example, while phonological processing has been highlighted as an important domain-specific predictor 

for reading development (e.g. Melby-Lervåg et al., 2012), it has also been, to a much lesser extent, 

associated with arithmetic development (Vanbinst & De Smedt, 2016a), even after controlling for 

reading skills (Vanbinst et al., 2020). Hence, a domain-specific process may show some domain-

generality. Against this background, I define domain-general and domain-specific processes in relative 

terms throughout this project. A domain-general process is thus conceptualised as a process that plays 

an important role in many different domains (e.g. executive functions), without clear indications that 

this process is a key factor in one domain, more than it is in other domains. On the other hand, a domain-

specific process is defined as a process that is considered a key process for performance and 

development in a particular domain, more than it is in other domains. An example of such a domain-

specific process for arithmetic is numerical magnitude processing. 

Domain-general and domain-specific processes have been studied in relative isolation from each 

other within research on arithmetic (Fias et al., 2013). As a result, little attention has been paid to the 

joint effects of domain-general and domain-specific processes on arithmetic, even though it is not 

unlikely that these processes interact with regard to their association with arithmetic. For example, 

numerical magnitude processing performance itself may to some extent be influenced by domain-

general processes, such as inhibition (e.g. Fuhs & Mcneil, 2013; Gilmore et al., 2013). On the other 

hand, the domain-specific factor mathematics anxiety might explain some variance in the association 

between the domain-general process metacognition and arithmetic (Morsanyi et al., 2019). Therefore, 

the current dissertation does not uniquely focus on either domain-general or domain-specific processes, 

but includes processes from both categories to assess their relative importance for arithmetic and its 

development. As a result, a more comprehensive image can be uncovered of how arithmetic is related 

to different cognitive, metacognitive and affective processes, both at a more domain-specific and at a 

more domain-general level. This will lead to a more thorough understanding of arithmetic performance 

and development and individual differences herein, which in turn can contribute to devising appropriate 

educational approaches and interventions. 
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In the remainder of this section, I will first focus on both domain-general and domain-specific 

cognitive processes, followed by a discussion of metacognitive processes and the domain-specific 

affective process of mathematics anxiety. 

2.2 Numerical magnitude processing 

Numbers lie at the heart of arithmetic. Not surprisingly, a large number of studies on arithmetic thus 

focused on numerical magnitude processing, as the core domain-specific process that correlates with 

and predicts (individual differences in) arithmetic performance and development. Numerical magnitude 

processing can be defined as children’s elementary intuitions about quantity and the ability to understand 

the meaning of numbers, and its crucial role in arithmetic performance and development is highlighted 

in an extensive body of empirical research (e.g. Bugden & Ansari, 2011; De Smedt, Verschaffel, et al., 

2009; Holloway & Ansari, 2009; Kolkman et al., 2013; Lonnemann et al., 2011; Vanbinst et al., 2018). 

This was shown in cross-sectional (e.g. Durand et al., 2005; Holloway & Ansari, 2009; Vanbinst et al., 

2012) and longitudinal research (e.g. Kolkman et al., 2013; Vanbinst et al., 2019) and to some extent in 

experimental studies (e.g. Booth & Siegler, 2008; but see Merkley et al., 2017 and Szűcs & Myers, 

2017). Integrating results from numerous studies on numerical magnitude processing, both De Smedt et 

al. (2013, for a narrative review) and Schneider et al. (2017, for a meta-analysis) emphasized the 

important role of numerical magnitude processing in arithmetic. In line with this, in a review aimed at 

integrating various phenomena in numerical development into a unified framework or integrated theory, 

Siegler (2016) proposed the generation of increasingly precise magnitude representations for an 

increasingly broad range of numbers as the common core of numerical development. 

In research on individual differences in mathematics performance, numerical magnitude processing 

is often measured using either nonsymbolic (i.e. dot patterns; e.g. Inglis et al., 2011) or symbolic (i.e. 

Arabic numerals; e.g. Holloway & Ansari, 2009) magnitude comparison tasks (see De Smedt et al., 

2013). In these tasks, participants are asked to indicate which of two presented numerical magnitudes is 

the numerically larger one. There is converging evidence that fast and accurate performance on these 

comparison tasks coincides with higher arithmetic achievement (De Smedt et al., 2013; Schneider et al., 

2017). Typically, performance on numerical magnitude comparison tasks is operationalised as overall 

accuracy, response time, ratio or distance effects (i.e. a subtraction of reaction times for comparisons 

with large versus small ratios or numerical distances; Holloway & Ansari, 2009), or the Weber fraction 

(i.e. the minimal amount of change in magnitude that is needed to detect a difference; Halberda et al., 

2008). These measures capture different aspects of participants’ performance and are not 

interchangeable (De Smedt et al., 2013). Importantly, particularly when operationalised as response 

time, performance on the symbolic comparison task has been found to be robustly and significantly 

correlated with concurrent and future mathematics achievement (see De Smedt et al., 2013). Accuracy, 

for example, can yield ceiling effects, especially from primary school onwards, and might lead to an 

underestimation of the relation between numerical magnitude processing and arithmetic competence 
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(Holloway & Ansari, 2009). Hence, in this dissertation, response time was chosen as the key 

performance measure of numerical magnitude processing skills. 

The relations between the processing of non-symbolic and symbolic numerical magnitudes and their 

development constitute one of the most debated topics in the field of numerical cognition (Schneider et 

al., 2017), yet the existing body of evidence converges to the conclusion that symbolic abilities are the 

most critical for the development of mathematics (e.g. Merkley & Ansari, 2016). Indeed, comparing the 

role of nonsymbolic and symbolic numerical magnitude processing in mathematics, it has been 

consistently found in the existing literature that symbolic numerical magnitude processing has a more 

important role in mathematics compared to nonsymbolic numerical magnitude processing. For example, 

De Smedt and colleagues (2013) revealed in their review of the existent literature that results for 

symbolic numerical magnitude processing were consistent and robust across studies and populations, 

while for nonsymbolic numerical magnitude processing, many conflicting findings have been reported. 

In line with this, Schneider and colleagues (2017) found in their meta-analysis that especially symbolic 

numerical magnitude processing was important for mathematical achievement, with a smaller role 

played by nonsymbolic numerical magnitude processing. Hence, within this doctoral project, only 

symbolic numerical magnitude processing was included, operationalised with a symbolic numerical 

magnitude comparison task.  

Different underlying mechanisms might be at play in the association between symbolic numerical 

magnitude processing and arithmetic. A possible driving force might be that to succeed in nearly every 

form of arithmetic, proficiency with Arabic symbols is required (Gilmore et al., 2018a). Furthermore, 

the majority of measures of arithmetic performance require the interpretation and transformation of 

information presented in symbolic form (i.e. Arabic numerals). As was suggested by Nosworthy et al. 

(2013), the unique variance in mathematical performance accounted for by symbolic processing may be 

related to recognizing numerals and mapping numerals to magnitudes, which are crucial skills in the 

mental manipulation of digits during arithmetic. In line with this, in mental arithmetic, one needs to 

mentally represent the magnitudes of the two operands and the magnitude of the answer (DeStefano & 

LeFevre, 2004). Another underlying mechanism might be that proficient numerical magnitude 

processing skills induce the transition to more efficient strategies (Booth & Siegler, 2008; Vanbinst et 

al., 2012). For example, a counting-on-larger strategy (Siegler, 1996; e.g. 2 + 5 = 5, 6, 7), which is a 

very common strategy in early arithmetic, requires a decision on which of the operands contains the 

larger number, and therefore this strategy draws on the understanding of numerical magnitudes. As such, 

proficient numerical magnitude processing may also be helpful for using an efficient arithmetic strategy. 

Another example is in the use of the so-called subtraction-by-addition strategy (e.g. Peters et al., 2014), 

in which one determines how much needs to be added to the subtrahend to get to the minuend (e.g. 

solving ‘72 – 64 = .’ by ‘64 + 6 = 70 and 70 + 2 = 72, so the answer is 6 + 2 = 8’). Consequently, this 

strategy requires a comparison of the magnitude of the numbers in the problem (Linsen et al., 2015), 
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and is considered to be particularly efficient on problems with a small numerical difference between 

minuend and subtrahend. Additionally, arithmetic facts may be stored in long-term memory in a 

meaningful way, i.e. according to their magnitude (e.g. Booth & Siegler, 2008; Butterworth et al., 2001; 

Robinson et al., 2002). More recently, evidence was found for a bidirectional association between 

symbolic numerical magnitude processing and arithmetic. This emphasizes that early arithmetic also 

predicts later symbolic numerical magnitude skills, suggesting that arithmetic development strengthens 

children’s ability to process the numerical meaning of Arabic digits (Vanbinst et al., 2019). 

Already early in childhood, numerical magnitude processing skills are present, can be reliably 

measured and are significantly correlated with mathematics performance (De Smedt et al., 2013; 

Schneider et al., 2017). Both cross-sectional (e.g. Nosworthy et al., 2013) and longitudinal studies (e.g. 

Matejko & Ansari, 2016; Vanbinst et al., 2018) have indicated that, in (early) primary school, numerical 

magnitude processing skills develop substantially (e.g. Holloway & Ansari, 2009; Sekuler & 

Mierkiewicz, 1977) as children become faster and more accurate at numerical magnitude processing 

tasks, especially on symbolic tasks. Concerning potential underlying developmental mechanisms, it has 

been suggested that number symbols become linked to the nonsymbolic system, the ability to rapidly 

and approximately estimate and compare nonsymbolic numerical quantities (i.e. the Approximate 

Number system, ANS). This is thought to happen through a process of mapping number symbols onto 

their corresponding nonsymbolic quantities (Mundy & Gilmore, 2009). Yet, more recently, a growing 

body of evidence questioned the direction of this underlying mechanism (e.g. Lyons et al., 2012; 

Matejko & Ansari, 2016). As mentioned above, there is growing evidence on bidirectional 

developmental dynamics between numerical magnitude processing and arithmetic, such that numerical 

magnitude processing skills are also strengthened in children through their arithmetic development 

across primary education (Vanbinst et al., 2019). 

While the current body of research on numerical magnitude processing in mathematics has provided 

valuable insights, its narrow focus has been criticized (see Fias et al., 2013). In their meta-analysis, 

Schneider and colleagues (2017) demonstrated that the overall correlation between numerical magnitude 

processing and mathematical competence is estimated to be r = .278. For mental arithmetic in particular, 

the correlation is a little higher (i.e. r = .378). These correlations suggest that numerical magnitude 

processing skills explain a significant but only small portion of the variance in mathematical abilities. 

Consequently, by narrowing the scope to numerical processing, existing research has ignored other 

processes that might play a role in arithmetic performance and development. Moreover, it remains to be 

seen whether and how the association between arithmetic and numerical magnitude processing is 

impacted by other (meta)cognitive processes. For example, it is not fully clear whether the association 

between arithmetic and numerical magnitude processing remains after taking the role of these other 

processes into account. This issue was tackled in the current dissertation by including various processes 

in concert to investigate their unique associations with arithmetic in addition to each other (see below). 
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2.3 Executive functions 

For a long time, executive functions have been identified to play an important role in mathematics 

performance and development (see Bull & Lee, 2014; Cragg & Gilmore, 2014; Raghubar et al., 2010, 

for reviews). Executive functions refer to a family of top-down mental processes required to concentrate 

and pay attention (Diamond, 2013). In other words, executive functions are processes that allow us to 

respond flexibly to our environment and to engage in deliberate, goal-directed thought and action (Cragg 

& Gilmore, 2014). This is particularly important in new situations and activities, which are a key 

characteristic of academic learning and thus essential for arithmetic in primary school children.  

Executive functioning is multi-faceted and mainly consist of the processes of inhibition, shifting and 

updating (e.g. Baggetta & Alexander, 2016; Miyake et al., 2000). First, inhibition refers to one’s ability 

to control one’s attention, behaviour and thoughts, in order to override a strong internal predisposition 

or external lure and instead do what is more appropriate or necessary (Diamond, 2013). Two types of 

inhibition can be distinguished, namely response inhibition (i.e. the ability to control one’s behaviour 

and one’s emotions in order to control behaviour, in order to resist temptations, and to not act 

impulsively) and interference control or cognitive inhibition (i.e. the ability to selectively attend to or 

focus on what we choose and suppress attention to other stimuli). Second, shifting is defined as the 

disengagement of an irrelevant task set or strategy, and the subsequent initiation of a new, more 

appropriate set (van der Sluis et al., 2007). Third, updating, or the central executive component of 

working memory, involves holding information in memory and flexibly manipulating it (Baddeley & 

Hitch, 1994).  

Importantly, there is both unity and diversity in executive functions (e.g. Baggetta & Alexander, 

2016; Diamond, 2013; Miyake et al., 2000). For example, in their review, Friedman and Miyake (2017) 

found that, when measured with latent variables, executive functions are correlated but separable. In line 

with this, behavioural studies incorporating batteries of widely used executive function tasks found low 

or non-significant correlations between these tasks, or, using factor analysis, yield multiple factors (e.g. 

Baggetta & Alexander, 2016; Brocki & Bohlin, 2004; Bull & Scerif, 2001; Carlson et al., 2013; 

Friedman & Miyake, 2017; Huizinga et al., 2006; Lee et al., 2012; Miyake et al., 2000; Van der Ven et 

al., 2012). Furthermore, neuroimaging studies provide evidence in support of the multi-componential 

nature of executive functions: Executive functions activate both common and specific neurobiological 

areas (Friedman & Miyake, 2017) and different components of executive functions are seen to rely on 

different parts of the prefrontal cortex (e.g. Aron et al., 2004, 2014; Crone et al., 2006; Crone & 

Steinbeis, 2017; Narayanan et al., 2005). 

Executive functions emerge during the first few years of life and from then onwards, throughout 

primary school and into adolescence, major advances in executive functioning occur (e.g. Best & Miller, 

2010; Carlson et al., 2013; Diamond, 2013; Huizinga et al., 2006). These are partially attributed to brain 
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maturation in the prefrontal cortex (e.g. Carlson et al., 2013; Diamond, 2002). The pronounced 

development of executive functioning in primary school is reflected in, for example, improvements in 

accuracy of performance on executive function tasks. Different components of executive functions vary 

somewhat in their developmental trajectories (Best & Miller, 2010). Research in young children 

provides evidence for dissociable, but interrelated executive functioning components, already in early 

childhood (e.g. Lee et al., 2013). 

Executive functions are recognized as important in general academic achievement, in different 

domains such as reading, writing, science and mathematics (e.g. Best et al., 2011; St Clair-Thompson 

& Gathercole, 2006). Some studies indicated that the role of executive functions in mathematics seems 

to be particularly important compared to their role in other domains (Geary, 2011; Willoughby et al., 

2012). Research on the associations between executive functions and mathematics has yielded important 

insights into mathematical development and the evidence for the importance of executive functions in 

mathematics performance stems from research using different designs (Gilmore et al., 2018a). One 

source of evidence comes from correlational or longitudinal studies, in which individual differences in 

executive functions are related to individual differences in concurrent or future mathematics 

performance. Another source of evidence stems from experimental studies. For example, in dual-task 

studies, participants perform tasks that tax their executive functions (e.g. loading working memory) 

while at the same time they perform arithmetical tasks, in order to investigate the effect of this taxation 

on arithmetic performance (e.g. De Rammelaere et al., 2001). In this diverse body of research, executive 

functions have been found to be correlated with and predictive of mathematical performance and 

development (e.g. Bull & Lee, 2014; Cragg & Gilmore, 2014; Friso-Van Den Bos et al., 2013), 

indicating that better executive functioning skills are associated with better mathematics skills. 

 Yet, in the existing body of research on the role of executive functions in arithmetic, different results 

are found depending on the component(s) of executive functions that are investigated. The majority of 

research on executive functions in arithmetic has focused on working memory or updating. Across these 

studies, this process has consistently been found to be a strong predictor of arithmetic performance (e.g. 

for a meta-analysis see Peng et al., 2016). Although more recently the interest is growing, historically, 

less attention has been devoted to the role of inhibition and shifting in arithmetic, and the evidence on 

their role in arithmetic is more equivocal. Some studies reported significant associations between 

inhibition or shifting and mathematics, while others found no relationship between the two (see Bull & 

Lee, 2014; Cragg & Gilmore, 2014; Friso-Van Den Bos et al., 2013, for reviews). These difference in 

results could be due to differences in, for example, the aspect of inhibition that was measured (e.g. 

response inhibition versus cognitive inhibition). Indeed, inhibition is a multi-faceted skill (Diamond, 

2013; Huizinga et al., 2006), and some forms of inhibition may be more involved in arithmetic than 

others, consequently resulting in different findings depending on the aspect of inhibition that was 

measured. Furthermore, differences could be due to the executive function tasks used and the stimuli 
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within the task (e.g. numerical versus non-numerical stimuli). For example, some evidence suggests that 

the relationship between inhibition and mathematics achievement is stronger when the inhibition task 

involves numerical rather than non-numerical stimuli (Cragg et al., 2017). Differences in the findings 

on the role of inhibition and shifting in mathematics could also be due to whether they were studied in 

relative isolation, or whether the unique contribution of these processes was considered on top of other 

processes such as updating or IQ. For example, Van der Ven et al. (2012) found that inhibition and 

shifting did not predict mathematics when updating was also considered. Another important point on 

which studies differ that likely influenced the results, is the mathematics task considered. Inhibition and 

shifting skills may have different levels of involvement in different aspects of mathematics. 

In the existing literature, numerous measures of executive functions have been used (see Baggetta & 

Alexander, 2016, for a review). Inhibition is often measured experimentally, using tasks in which 

participants have to respond to certain features of a task and ignore others. Shifting is most commonly 

measured using sorting or classification tasks. Updating measures usually ask participants to recall 

information while simultaneously processing or manipulating this information. A pivotal point in the 

measurement of executive functions is the issue of task impurity (e.g. Bull & Lee, 2014; Miyake et al., 

2000), which concerns the problem that a single task assess different components (e.g. both executive 

and non-executive function processes) making a pure interpretation of what the task measures 

troublesome. In research on executive functions, this is particularly problematic, because executive 

functions are higher-order processes that manifest themselves in operating on other processes. As such, 

tasks measuring executive functions insurmountably also tap into other (cognitive) processes that are 

not necessarily relevant to the targeted executive functions. To minimize interpretation difficulties 

concerning the importance of executive functions in arithmetic versus the importance of numerical 

processing, none of the executive functioning tasks in this dissertation included numerical stimuli. For 

inhibition, this dissertation specifically focused on measures of cognitive inhibition or interference 

control, because cognitive inhibition rather than response inhibition is likely to play a role in arithmetic. 

An example of this is when one has to inhibit competing answers while retrieving arithmetic facts (e.g. 

Verguts & Fias, 2005).  

The association between executive functions and arithmetic is theoretically appealing. For example, 

cognitive inhibition (i.e. interference control) might play a role in arithmetic, as arithmetic facts may be 

stored in an associative network in semantic memory (e.g. Verguts & Fias, 2005). Therefore, they might 

be particularly prone to interference because of the number of features they share (De Visscher & Noël, 

2014b). Hence, incorrect but competing answers have to be inhibited during arithmetic. This is 

exemplified in the types of errors typically seen when children retrieve arithmetic answers, e.g. 

retrieving the answer to the corresponding addition item instead of the multiplication item, such as 

responding ‘5’ to ‘3 × 2’. On the other hand, good executive functions might help to suppress inefficient 

arithmetic strategies and switch to more efficient ones (e.g. using a decomposition of operands strategy 
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instead of finger counting), or shift between different arithmetic operations. Good updating skills might 

assist in keeping relevant information in mind during problem-solving, keeping intermediate solutions 

in mind and manipulating them while calculating, and may also be required to store and access 

information (e.g. arithmetic facts) in long-term memory.  

Because of the multi-componential nature of executive functions (e.g. Friedman & Miyake, 2017; 

Lee et al., 2013; Miyake et al., 2000), because of the evidence for the importance of all three executive 

functioning skills for arithmetic (Gilmore et al., 2018b), and because these different components of 

executive functions are differently related to arithmetic (e.g. Bull & Lee, 2014; Cragg et al., 2017), it is 

of utmost importance to include all three aspects of executive functioning when examining their role in 

other processes such as arithmetic. In the current dissertation, all three well-known components, namely 

inhibition, shifting and updating, were therefore considered.  

2.4 Metacognition 

Another important domain-general process that has received less attention in research on individual 

differences in arithmetic performance, yet has been intensively studied in the field of mathematics 

education (e.g. Schneider & Artelt, 2010), is metacognition. Various conceptualisations of 

metacognition have been used in the existing literature. A broad definition of metacognition that has 

been widely used is ‘thinking about your thinking’ or “any knowledge or cognitive activity that takes as 

its object, or regulates any aspect of any cognitive enterprise” (Schneider, 2015b, p. 282).  

The idea that accurate self-knowledge is meaningful and is something to strive for, has captivated 

thinkers since Socrates. The term metacognition was first introduced by Flavell (1979) and is often 

defined as a broader concept including, on the one hand, declarative metacognitive knowledge and, on 

the other hand, procedural metacognition. Metacognitive knowledge is defined as knowledge about 

cognition and learning (e.g. Brown, 1978) or “knowledge or beliefs about what factors or variables act 

and interact in what ways to affect the course and outcome of cognitive enterprises” (Flavell, 1979, 

p. 907). It includes factual knowledge about the importance of person, task and strategy variables for 

processing and recalling information (Flavell, 1979; Schneider, 2015b). Procedural metacognition is a 

collection of self-reflecting, higher-order cognitive processes, in other words, how people monitor and 

control their cognition on-task during ongoing cognitive processes (Flavell, 1999; Nelson & Narens, 

1990). Because both aspects of metacognition have been shown to be important for mathematics, 

declarative metacognitive knowledge as well as procedural metacognition were included in the current 

dissertation. 

The conceptualisation of procedural metacognition in the current dissertation is in accordance to the 

theoretical framework by Nelson and Narens (1990) on procedural metacognition (see Figure 1.1). This 

model posits that procedural metacognition encompasses two aspects, on the one hand metacognitive 

monitoring (top panel of Figure 1.1) and on the other hand metacognitive control (bottom panel of 
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Figure 1.1). Metacognitive monitoring is defined as the subjective self-assessment of how well a 

(cognitive) task will be/is/has been performed (Nelson & Narens, 1990). It involves judging the success 

and/or progress of cognitive processing (Chua et al., 2014). Metacognitive control, on the other hand, is 

an action-oriented component of procedural metacognition and is defined as the individual's executive 

activities enabling the use and adaptation of different cognitive operations with the aim to increase 

learning behavior or test performance (Roebers et al., 2014). Metacognitive control allows for the 

direction of behaviour such as strategy selection, information gathering or correction of given responses. 

Furthermore, the model by Nelson and Narens (1990) indicates that different kinds of monitoring and 

control occur during different stages of cognitive performance (e.g. acquisition, retrieval; middle panel 

of Figure 1.1). For example, in monitoring, judgments of learning (JOL) are predictive judgments 

provided during or shortly after a study phase and judge how likely someone will remember the studied 

information later on. Retrospective confidence judgments, on the other hand, are postdictive judgments 

made after performance to indicate how certain people are that their response is correct (Nelson & 

Narens, 1990).  

 

 

Figure 1.1. Theoretical framework of Nelson and Narens (1990, p. 129). 

 

Because of the broadness of the concept of metacognition, including several components of 

metacognitive knowledge (e.g. person, task, and strategy category; Flavell, 1979) and different kinds of 

monitoring and control during different stages of performance (see model Nelson & Narens, 1990, 

Figure 1.1), the current dissertation attended to specific aspects of metacognition. Regarding 

metacognitive knowledge, I focused on declarative metacognitive strategy knowledge, i.e. knowledge 
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on which strategies are likely to be effective in achieving goals in which sorts of cognitive undertakings 

(Flavell, 1979). The rationale behind this choice was the importance of good strategic knowledge for 

arithmetic performance and development (e.g. Verschaffel et al., 2007). In line with the majority of 

research on procedural metacognition, I focused on the metacognitive monitoring component 

throughout the current dissertation. Specifically, I examined retrospective metacognitive monitoring 

judgments on accuracy of performance, which indicates whether a child beliefs his/her answer on an 

item is correct or wrong. This focus on retrospective monitoring of accuracy was driven by the rationale 

that a good understanding of the relation between monitoring of accuracy and arithmetic can provide a 

foundation for intervention and/or training to enhance arithmetic accuracy. For example, it has been 

shown that giving feedback after performance to improve this performance is especially helpful for low 

confidence responses (Butler et al., 2008). In the context of arithmetic in primary school children this 

might provide a promising principle to utilize in interventions. 

From an early age, most children are able to theorize about their own cognition (e.g. Schraw & 

Moshman, 1995). For example, Destan and colleagues (2014) found evidence for robust metacognitive 

monitoring skills in 5-year-old children. Throughout primary school, metacognitive knowledge and 

skills develop substantially (e.g. Lyons & Ghetti, 2010; Roebers & Spiess, 2017; Schneider, 2008, 

2010), resulting in better general metacognitive knowledge (e.g. Schneider & Löffler, 2016) and 

improved monitoring and control skills (e.g. Garrett et al., 2006; Schneider & Lockl, 2008). For 

example, in primary school, metacognitive monitoring accuracy is found to increase (e.g. Ghetti, 2008; 

Lyons & Ghetti, 2010; Schneider, 2008, 2010; Schneider & Lockl, 2008; Schneider & Löffler, 2016). 

As metacognition encompasses different aspects, it is not surprising that these different aspects of 

metacognition follow different developmental paths (Schneider & Löffler, 2016). Compared to more 

clear-cut age trends for declarative metacognitive knowledge, the evidence regarding metacognitive 

monitoring is less univocal (Schneider, 2015b), yet, also in metacognitive monitoring critical 

development is observed during early to late childhood (e.g. Geurten et al., 2018; Lyons & Ghetti, 2010). 

Importantly, it has been suggested that a gradual shift toward domain-general metacognition occurs in 

children aged between 8 and 13, and that metacognition is no more bound by task content and domain 

knowledge after the age of 10 (Geurten et al., 2018), a possibility that will be investigated in the context 

of the current dissertation. Over its extended course of development during which metacognition 

becomes increasingly under an individual’s conscious control, metacognition becomes more explicit, 

powerful and effective. This metacognitive development is crucial, as age-related improvements in 

children’s ability to monitor and regulate their mental operations are widely recognized to be a driving 

force in cognitive development, underlying age-related improvements in accuracy on a wide variety of 

tasks (Lyons & Ghetti, 2010).  

Already in 1979, in his pivotal paper, Flavell (1979) posed that metacognitive knowledge and skills 

have an important effect on cognitive performance. Indeed, metacognition has been regarded as a 
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fundamental skill influencing cognitive performance and learning in diverse domains such as 

mathematics, memory, reading, and perception (e.g. Annevirta et al., 2007; Block & Peskowitz, 1990; 

Efklides & Misailidi, 2010; Freeman et al., 2017; Kuhn, 2000; Lyons & Ghetti, 2013; Özsoy, 2011; 

Rinne & Mazzocco, 2014; Schneider, 1998; Schneider & Artelt, 2010; Schraw et al., 2006; van 

Kraayenoord & Schneider, 1999; Veenman et al., 2004, 2006). The importance of metacognition in 

different (cognitive) domains is not surprising: Metacognitive aspects, such as knowing the limits of 

your own knowledge and being able to regulate that knowledge, are essential components of self-

regulated and successful learning (Schraw et al., 2006), enabling learners to improve their cognitive 

achievements. For example, good metacognition allows learners to correctly allocate study-time, check 

answers when they feel unsure about the correctness of the answer or provide a learning moment when 

an error is detected. Moreover, there is consensus that one way in which parents and teachers can 

facilitate cognitive development is by the development of children’s metacognition (Schneider, 2015b). 

Specifically investigating the role of metacognition in arithmetic thus seems a promising avenue. 

Although there is a long tradition of research investigating metacognition in mathematics education 

(e.g. De Corte et al., 2000; Schneider & Artelt, 2010; Schoenfeld, 1992), in comparison, much less 

emphasis is placed on the role of metacognition in the field of mathematical cognition. This is 

exemplified in the fact that influential books on numerical and mathematical cognition make little 

mention of metacognition (e.g. Campbell, 2005; Dowker, 2019c; Geary, 1994; Gilmore et al., 2018a; 

Henik & Fias, 2018). Even the integrative work of Cohen Kadosh and Dowker (2015) on numerical 

cognition only includes very few entries on metacognition. Yet, studies on the relation between 

metacognition and mathematics have shown that successful mathematics performance depends not only 

on having adequate knowledge, but also on sufficient awareness, monitoring and control of that 

knowledge (e.g. Carr et al., 1994; Carr & Jessup, 1995; Freeman et al., 2017; Garofalo & Lester, 1985; 

Lucangeli & Cornoldi, 1997; Özsoy, 2011; Rinne & Mazzocco, 2014; Schoenfeld, 1992; Stillman & 

Mevarech, 2010; van der Stel et al., 2010). Moreover, very few studies specifically focused on 

subdomains of mathematics, such as arithmetic, to functionally specify the role of metacognition in 

mathematics. The current dissertation specifically placed itself within this gap in the literature by adding 

to the mathematical cognition literature through the specific investigation of metacognition in arithmetic 

performance.  

There are many different ways to measure metacognition (e.g. Fleming & Lau, 2014; Lingel et al., 

2019; Veenman & Van Cleef, 2019). These differences go back to, for example, the level at which 

metacognition is measured (e.g. global, overall judgment of performance in a whole task versus trial-

by-trial measures), the source of information (e.g. observations versus self-reports), or whether 

metacognition is measured during performance or not (i.e. offline versus online measures). The current 

dissertation included different measures of metacognition, with different characteristics (e.g. both online 

and offline measures). In line with the current body of research (Schneider, 2015b), our measure 
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assessing metacognitive knowledge was taken without concurrent assessment of cognitive performance 

(i.e. offline) using a questionnaire (Haberkorn et al., 2014), while our measure of metacognitive 

monitoring was collected simultaneously (i.e. online) with the measure of cognitive activity (i.e. 

arithmetic). To measure metacognitive monitoring I used a calibration measure (e.g. Lingel et al., 2019; 

Rinne & Mazzocco, 2014). This choice of measure for metacognitive monitoring is in line with the 

foundational model of Nelson an Narens (1990), which states that the main methodological tool for 

generating data about metacognitive monitoring consists of the person’s subjective reports about his/her 

introspection. In turn, this subjective judgment is then compared to the objective performance in order 

to index metacognitive monitoring of accuracy. It is important to note that a large portion of research on 

the association between procedural metacognition and mathematics has focused on metacognitive 

strategy selection (e.g. Carr et al., 1994; Dowker, 2019c; Geurten & Lemaire, 2017). In this dissertation, 

I tackle the question on the association between metacognitive monitoring and mathematics from a 

novel, very specific point of view: I focused on performance outcomes of arithmetic (i.e. fluency, 

response time, accuracy) instead of general mathematics and (arithmetic) strategy use, and I investigated 

metacognitive monitoring of arithmetic accuracy. This specific focus allowed to further functionally 

unravel the relation between metacognition and mathematics. 

The few existing studies on metacognition in arithmetic have highlighted that the successful appraisal 

of the accuracy of one’s arithmetic answer is a powerful predictor of arithmetic performance in primary 

school children (Rinne & Mazzocco, 2014). Building on this work, the current dissertation tackled 

important gaps in the body of research on metacognition in arithmetic by investigating the unique role 

of different aspects of metacognition in arithmetic, in addition to other important cognitive and affective 

processes, in different age groups, both cross-sectionally and longitudinally, and examining it both at 

the behavioural and neurobiological level. 

2.5 Mathematics anxiety 

Development of expertise in a particular field, for example arithmetic, depends not only on cognitive 

skills, but also on affective processes (e.g. Batchelor et al., 2019). Such affective processes make a very 

important contribution to arithmetical performance (Dowker, 2019c), which is exemplified in the 

extensive body of research that has focused on a particular domain-specific affective process, namely 

mathematics anxiety. Mathematics anxiety, or “a feeling of tension and anxiety that interferes with the 

manipulation of numbers and solving of mathematical problems in ordinary life and academic 

situations” (Richardson & Suinn, 1972, p. 551), is systematically found to be moderately negatively 

related to mathematics performance in general (e.g. see meta-analyses Hembree, 1990; Ma, 1999; 

Namkung et al., 2019), and to arithmetic in particular (e.g. Ashcraft et al., 1998; Harari et al., 2013; 

Hunt et al., 2017; Sorvo et al., 2017). In line with the idea that, in general, younger children tend to have 

positive attitudes towards mathematics (Dowker, 2019d) and that mathematics anxiety only arises in the 

context of complex mathematics (e.g. algebra; Maloney & Beilock, 2012), the initial focus in research 
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on mathematics anxiety was mainly on (young) adults (see Ashcraft et al., 2007, for a brief overview). 

This is also exemplified in the initial measures for mathematics anxiety, which were developed for adults 

(e.g. Richardson & Suinn, 1972). While much of the research on mathematics anxiety has been done in 

secondary school children and adults (Dowker, 2019e), more recent studies have also focused on young 

children (see Batchelor et al., 2019; Dowker, 2019e; Namkung et al., 2019, for discussions on this topic). 

This research indicates that mathematics anxiety is already reported and demonstrated in young children 

(e.g. Harari et al., 2013; Ma & Kishor, 1997; Ramirez et al., 2013; Vukovic et al., 2013). Rossnan (2006) 

suggested that mathematics anxiety can develop at any age and that its development is often linked to a 

child’s first experiences with mathematics. The first years of formal mathematics instruction are thus of 

crucial importance in the development of mathematics anxiety. While some failed to find significant 

correlations in primary-school children (e.g. Krinzinger et al., 2009), most studies in children found a 

significant negative association between mathematics anxiety and arithmetic performance (e.g. Gierl & 

Bisanz, 1995; Harari et al., 2013; Krinzinger et al., 2009; Ma & Kishor, 1997; Petronzi et al., 2019; 

Ramirez et al., 2013; Vukovic et al., 2013; Wu et al., 2012). 

The first clear example of an empirical study into mathematics anxiety was a research paper by 

Dreger and Aiken (1957) in which they referred to ‘number anxiety’ to label the emotional reaction to 

numbers and mathematics. They found it to be a separate construct that is dissociable from more general 

anxiety, unrelated to general intelligence, and negatively correlated with mathematics grades. These 

findings have been replicated many times. Indeed, although mathematics anxiety and general anxiety or 

test anxiety are correlated (e.g. Ashcraft & Moore, 2009; Devine et al., 2012; Park et al., 2014), 

mathematics anxiety overlaps only to a degree with other anxiety measures (e.g. Ashcraft et al., 2007; 

Ashcraft & Faust, 1994; Dew et al., 1984; Hembree, 1990) and mathematics anxiety is also found in 

individuals without high general anxiety or test anxiety (e.g. Passolunghi et al., 2016). Moreover, in a 

meta-analysis, Hembree (1990) found that mathematics anxiety is only weakly related to general 

cognitive skills, showing that individuals with high, average and low IQ can experience mathematics 

anxiety. When comparing anxiety about mathematics versus anxiety in other domains in 9-year-olds, 

Punaro and Reeve (2012) found anxiety for difficult problems in both mathematics and literacy. Yet, 

children expressed more anxiety about mathematics and this anxiety about mathematics correlated 

negatively with mathematics performance, whereas this was not the case for literacy anxiety and literacy 

performance. Hence, although children may have general anxiety and dislike of academic achievements 

or performance/test anxiety, mathematics is generally considered to elicit more fear than most other 

academic subjects (Dowker, 2019c). It is thus essential to examine the role of this domain-specific 

affective factor in arithmetic. 

Importantly, mathematics anxiety is not a unidimensional construct: It is often conceptualised as 

encompassing two distinct dimensions, namely cognitive mathematics anxiety and affective 

mathematics anxiety (e.g. Dowker, 2019d; Ho et al., 2000; Wigfield & Meece, 1988). The cognitive 
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component (‘worry’, ‘performance anxiety’) consists of self-deprecatory thoughts about one’s 

performance; the affective component (‘emotionality’) includes feelings of nervousness, fear, 

discomfort, tension and unpleasant physiological reactions to mathematics and/or the presence of 

mathematical stimuli (e.g. Dowker, 2019d; Ho et al., 2000; Wigfield & Meece, 1988). In general, the 

affective component is most strongly and consistently related to mathematics performance (e.g. Harari 

et al., 2013; Ho et al., 2000; Sorvo et al., 2017; Vukovic et al., 2013; Wigfield & Meece, 1988; Wu et 

al., 2012). Therefore, in this dissertation, I used a measure of mathematics anxiety that predominantly 

taps into this affective component of mathematics anxiety. 

Mathematics anxiety is mostly measured using self-report questionnaires or rating scales in which 

respondents indicate how anxious they would feel (from “not anxious at all” to “very anxious”) in 

situations ranging from formal math settings to informal, everyday situations. The most widely used test 

of mathematics anxiety is probably the Mathematics Anxiety Research Scale (MARS; Richardson & 

Suinn, 1972) and adapted (e.g. abbreviated) versions of it. In this dissertation, I used a developmentally 

appropriate, adapted measure of this questionnaire.  

There are several plausible reasons why mathematics anxiety is related to arithmetic performance. A 

first possibility is that mathematics anxiety leads to worse mathematics performance, as is explained in 

the Debilitating Anxiety Model (Carey et al., 2016) and the Cognitive Interference Theory (Namkung 

et al., 2019). For example, mathematics anxiety may lead to avoidance of mathematics. On the one hand, 

this could result in a local effect on the individual’s performance. This may be exemplified in rushing 

to finish the task to minimize the time doing arithmetic, even at the cost of accuracy (e.g. Ashcraft et 

al., 2007; Ashcraft & Faust, 1994; Dowker, 2019e) or in not providing an answer to an arithmetic 

question because math anxious people may see this as a better option than providing an entirely wrong 

answer (i.e. a no-attempt error; Chinn, 2012). On the other hand, there could be a more global avoidance 

effect, e.g. to avoid mathematics-related activities, at the cost of grasping learning opportunities 

(Ashcraft, 2002). Mathematics anxiety may also lead to rumination and procuring thoughts that occupy 

working memory resources which could otherwise be used for arithmetic (i.e. ‘Disruption Account’, 

Ramirez et al., 2018). This impact of mathematics anxiety on working memory is particularly 

problematic in arithmetic given the important role of working memory in arithmetic procedures 

(Ashcraft & Moore, 2009), which require the temporary storage of problem information and/or interim 

solutions and keeping track of counts, and thus rely on working memory. The influence of mathematics 

anxiety on performance is also known to increase with time pressure when completing mathematics 

tasks (Ashcraft & Moore, 2009). 

A second possibility is that arithmetic performance deficits lead to anxiety, as is explained in the 

Deficit Theory (Carey et al., 2016; Namkung et al., 2019): When confronted with mathematics 

problems, children with low mathematics performance activate recollections of previous poor 

performance, which generates mathematics anxiety in the current situation (e.g. Carey et al., 2016; 
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Dowker et al., 2016; Hembree, 1990; Ma & Xu, 2004; Maloney et al., 2015; Sorvo et al., 2019). This 

may explain why levels of mathematics anxiety and their association with performance usually increase 

with age (Ma & Kishor, 1997). Indeed, one possible underlying mechanism therein might be that 

repeated experiences of failure in mathematics together with a growing awareness of this failure might 

lead to (more) math anxiety.  

More recently, a third possibility has been coined, expressing the association between mathematics 

anxiety and performance as bidirectional (e.g. Dowker, 2019e; Gunderson et al., 2018), i.e. a Reciprocal 

Theory (Carey et al., 2016). This theory suggests that poor mathematics performance can trigger 

mathematics anxiety and mathematics anxiety can reduce performance, which could lead to a vicious 

circle (e.g. higher mathematics anxiety can lead to worse arithmetic performance, which in turn 

increases anxiety). 

Taken together, the current, extensive body of research demonstrated the importance of mathematics 

anxiety for mathematics performance. Yet, in line with the concluding remarks by Mammarella and 

colleagues (2019) in their book on “What is known and what is still to be understood” on the topic of 

mathematics anxiety, there is a lack of longitudinal investigations into the directionality and 

development of this association. This is especially the case in young primary school children. 

Furthermore, there is a lack of studies that simultaneously include other processes that potentially 

interfere in this association (Mammarella et al., 2019), such as metacognition (Tobias, 1986). Therefore, 

the current dissertation examined mathematics anxiety longitudinally in young primary school children, 

taking into account other, potentially relevant (meta)cognitive processes, in order to further our 

understanding of the processes underlying arithmetic performance. 

 

3 Investigation of processes in concert 

As outlined above, a multitude of processes have an impact on arithmetic performance. Dowker 

firmly stated in a recent influential book on individual differences in arithmetic (Dowker, 2019c, p. 4): 

“Any statement that arithmetic ability is purely the product of a single factor is oversimplified”. Yet, the 

vast majority of the abovementioned studies on the associations between these cognitive, metacognitive 

and affective processes and arithmetic have largely based their conclusions on isolated bodies of 

research without studying multiple processes in concert.  

It is essential to simultaneously examine different processes which, when investigated in isolation, 

have been identified as important for arithmetic performance and development. Such simultaneous 

consideration of processes allows for the investigation of their unique contribution to performance in 

addition to each other. For example, in contrast to an extensive body of research on the role of numerical 

magnitude processing and executive functions in mathematics, much less is known about whether, on 

the one hand, executive functions continue to predict mathematics skills after taking numerical 
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magnitude processing into account, and, on the other hand, to what extent numerical magnitude 

processing itself and its association with arithmetic is affected by more domain-general processes such 

as executive functions or metacognition.  

 Simultaneous investigation of different processes is especially important when it has been shown 

that these processes are interrelated. In the existing body of research, associations between some of the 

key processes that are considered in the current dissertation have already been demonstrated. For 

example, in their meta-analysis, Chen and Li (2014) found that the overall effect size of non-symbolic 

magnitude comparison and mathematical competence was significantly lower in studies controlling for 

general non-numerical cognitive abilities compared to studies not controlling for them. Likewise, 

Schneider and colleagues (2017) suggested that including other cognitive abilities (such as inhibition) 

in regression models might have a similar effect on the association between symbolic numerical 

magnitude processing and mathematics performance. Simanowski & Krajewski (2019) found that, after 

controlling for early numerical magnitude processing, executive functions in kindergarten were no 

longer predictive of mathematics skills in first and second grade.  

Within this dissertation, two particularly interesting topics were identified for which simultaneous 

investigation seems critical, namely the interrelations between executive functions and metacognition, 

and the interrelations between metacognition and mathematics anxiety (see below section 5.1 ‘Affected 

by affect’). For example, there is large theoretical overlap between executive functions and 

metacognition as both are higher-order, control processes related to the regulation of behaviour. The 

way they are defined in research is often very similar and they follow a similar developmental trajectory 

(see Roebers, 2017, for an extensive review). Furthermore, studies investigating both functions 

simultaneously suggest that executive functions and metacognition are related (see Roebers & Feurer, 

2016, for a short overview). When considered together to predict educational achievement, there is some 

evidence that metacognitive skills are more important than executive functions (Bryce et al., 2015). To 

thoroughly investigate their unique role in arithmetic, it is thus essential to investigate these processes 

in concert. 

Despite these suggestions and observations that simultaneously investigating different processes can 

have an important impact on the results regarding the associations of these processes with performance, 

studies that include a variety of (meta)cognitive and affective processes are scarce. Hence, in the current 

dissertation, I have investigated different cognitive, metacognitive and affective processes in concert, 

which are known to play a key role in arithmetic when investigated in isolation. As such, I was able to 

investigate their unique role in individual differences in arithmetic performance and development, in 

addition to each other. 
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4 Longitudinal investigation 

The current dissertation focused on primary school children. Throughout primary school crucial 

development occurs in arithmetic performance (Siegler, 1996). This arithmetic development is 

characterized by the transition from an effortful, slow and erroneous process to a process marked by 

fluency, i.e. fast and accurate processing. This is explained by a transition from initially relying on 

effortful strategies to solve basic arithmetic items (e.g. counting strategies), towards efficient arithmetic 

strategies (e.g. decomposition) or automation through arithmetic fact retrieval (e.g. Bailey et al., 2012; 

Siegler, 1996). Rather than this development implying an abrupt transition from only procedural 

strategies to only retrieval of arithmetic facts, there is a change in strategy distribution over 

developmental time encompassing a decrease in reliance on procedural strategies and an increase of the 

use of arithmetic fact retrieval (e.g. Barrouillet et al., 2008; Siegler, 1996). Importantly, large individual 

differences in the repertoire of strategies used by children remain present over development (e.g. 

Dowker, 2005). Over primary school, these dynamics result in substantial development and considerable 

individual differences in arithmetic skills. 

As was discussed above, primary school is also a crucial period for development in various other 

domains and processes, including numerical magnitude processing (e.g. Matejko & Ansari, 2016), 

executive functions (e.g. Carlson et al., 2013; Diamond, 2013), metacognition (e.g. Schneider, 2010, 

2015a; Schneider & Lockl, 2008) and mathematics anxiety (e.g. Mammarella et al., 2019). These 

developmental trajectories are very likely to impact the associations studied within this dissertation (e.g. 

Bull & Lee, 2014; Van der Ven et al., 2012). For example, growing experience with arithmetic might 

improve numerical magnitude processing skills, and improving numerical magnitude processing skills 

might facilitate the development of more mature arithmetic strategies (e.g. retrieval), both leading to a 

stronger association between numerical magnitude processing and arithmetic over time (e.g. Vanbinst 

et al., 2019). Furthermore, it is also likely that executive functions and metacognitive skills play a 

different role when children are in the early stages of learning arithmetic versus when they perform 

known arithmetic operations that are more automatized at a later developmental stage. For example, 

initial, effortful strategies early in arithmetic development might strongly rely on updating skills, a role 

which may decrease in light of the use of less effortful strategies (e.g. Raghubar et al., 2010). In the 

beginning stages of the use of retrieval strategies, inhibition skills might be needed more to inhibit 

competing, but irrelevant answers that are also activated when learning to retrieve answers to arithmetic 

problems. Once strong associations between arithmetic items and their respective answer are formed, 

inhibition skills might be less necessary (e.g. Goldfarb, 2018). The role of shifting skills in arithmetic 

might become more prominent over development, for example, as children learn more strategies and 

thus can shift between those (e.g. Yeniad et al., 2013). Improvements in metacognitive knowledge and 

skills and in arithmetic may also impact their relation, as, for example, improvements in arithmetic may 

enhance metacognitive monitoring in arithmetic, strengthening their association. Or on the other hand, 
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gradually improving metacognitive knowledge and skills may enhance performance, for example, by 

providing a learning moment when an error is detected (e.g. Dunlosky et al., 2003; Schneider & Artelt, 

2010). The development of mathematics anxiety and arithmetic may also affect their interrelation, which 

may become stronger due to increasing disruption of working memory as a result of increasing 

mathematics anxiety, or due to increasing experience with failure in arithmetic over development (e.g. 

Dowker, 2019e).  

Hence, in order to obtain a thorough understanding of these interrelations in primary school, not only 

simultaneous investigation of these processes, but also a longitudinal research is essential. However, 

most existing studies on associations between (meta)cognitive and affective processes and arithmetic 

performance only report on concurrent relations, leaving important issues unresolved. First, it remains 

unknown whether the associations between arithmetic and these processes under investigation are stable 

over development. Second, it is unclear whether these processes (i.e. numerical magnitude processing, 

executive functions, metacognition and mathematics anxiety) are not only associated concurrently, but 

also predict later arithmetic performance. Finally, going one step further, it is yet to be examined whether 

these associations still hold when prior arithmetic performance is taken into account and thus whether 

the aforementioned (meta)cognitive and affective processes contribute specifically to the development 

of arithmetic skills. 

When the associations between arithmetic and numerical magnitude processing, executive functions, 

metacognition and mathematics anxiety are studied in isolation from each other, longitudinal studies 

have confirmed the predictive power of each of these processes separately for later arithmetic 

performance. For example, several studies found evidence for the predictive value of numerical 

magnitude processing (e.g. De Smedt, Verschaffel, et al., 2009; Sasanguie et al., 2012; Schneider et al., 

2017; Vanbinst, Ghesquière, et al., 2015) for later arithmetic. There is evidence as well for the predictive 

value of executive functions, especially updating skills, for later arithmetic performance (e.g. De Smedt, 

Janssen, et al., 2009; Lee & Bull, 2016; Mazzocco & Kover, 2007; Passolunghi et al., 2008; Van der 

Ven et al., 2012). While studies on the longitudinal associations between metacognition and arithmetic 

are scarce, the few available studies confirm the predictive power of metacognition for children’s later 

arithmetic (e.g. Rinne & Mazzocco, 2014; van der Stel & Veenman, 2010). Mathematics anxiety has 

also been found to be predictive of later mathematical performance (Carey et al., 2016). Importantly, 

these longitudinal studies, again, focus mostly on one (meta)cognitive or affective process to predict 

later arithmetic performance. As such, they fail to identify the unique contributions of such processes 

when other critical (meta)cognitive or affective processes that predict arithmetic are considered. Even 

more critical, most of these longitudinal studies fail to include prior arithmetic performance as an 

important predictor in their models, and hence do not investigate the importance of these processes 

relative to prior arithmetic performance. This is crucial, as extensive evidence has suggested that early 

academic skills are the most robust indicator of later performance (e.g. Duncan et al., 2007). Moreover, 
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including prior arithmetic performance importantly yields the possibility to investigate the predictive 

power of these functions for development in arithmetic (Duncan et al., 2007). It is important to note that, 

while the current doctoral project predominantly focusses on the role of different processes in arithmetic, 

it is nevertheless imperative to also consider the role of arithmetic in these processes and the possible 

bidirectionality of these interrelations. To tackle these abovementioned issues, the current dissertation 

includes a longitudinal panel study including arithmetic, numerical magnitude processing, executive 

functions, metacognition, and mathematics anxiety. 

5 Metacognitive monitoring in arithmetic: A closer look  

Throughout the first studies presented in this dissertation, metacognitive monitoring was found to be 

an important, unique process in arithmetical performance and development. As a result, the second part 

of this dissertation aimed to flesh out in more detail the association between metacognitive monitoring 

and arithmetic in primary school children. Specifically, three important gaps in the existing body of 

research on the role of metacognitive monitoring in arithmetic were addressed. Firstly, in line with the 

abovementioned arguments that it is essential to investigate different processes in concert and 

longitudinally, we examined whether mathematics anxiety played a role in the association between 

metacognitive monitoring and arithmetic performance and development. Secondly, we studied whether 

the importance of metacognitive monitoring was domain-specific to arithmetic, or whether it reflects a 

more general performance monitoring process. Lastly, we took up unanswered questions in both the 

field of arithmetic and the field of metacognition by investigating the neurobiological basis of 

metacognitive monitoring in children. As such, we also furthered our understanding of the prefrontal 

activation that is consistently found in the arithmetic brain network (Peters & De Smedt, 2017, for a 

review) and that, as metacognition has also been related to the prefrontal cortex (e.g. Vaccaro & 

Fleming, 2018), has been suggested to at least partially reflect metacognitive processes (e.g. Ansari et 

al., 2005). In the following sections, I further elaborate on these three addressed research gaps in more 

detail. 

5.1 Affected by affect? 

Research on metacognitive monitoring and mathematics anxiety has been done in isolation from each 

other, making their interrelation and unique contribution to the (individual differences in) performance 

and development of arithmetic unclear. This is particularly troublesome, as it is likely that metacognitive 

monitoring and mathematics anxiety are associated, because both are linked to a reflection on one’s 

performance. Hence, it is of importance to further our understanding of their interrelations and uncover 

whether their interplay has an impact on the respective associations of both processes with arithmetic. 

In the literature, suggestions and/or hypotheses on the importance of these interrelations can be found. 

For example, Ashcraft and Faust (1994), when discussing the anxiety to performance association, 

suggested that this relation might exist because mathematics anxious individuals feel less certain of their 
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answers and thus, for example, engage in extensive answer changing. Furthermore, Gilmore and 

colleagues (2018a) included aspects of metacognitive thinking when listing possible risk factors for 

developing mathematics anxiety (e.g. “student’s own low perceptions of their mathematics ability”; 

“expectations about performance”). Reviewing the literature on mathematics anxiety, Ashcraft and 

colleagues (2007) indicated that higher levels of mathematics anxiety are associated with lower self-

confidence in mathematics, which was also found in the meta-analysis by Hembree (1990). Similarly, 

Dowker (2019c) indicated that mathematics anxiety is often linked to low estimates of one’s own 

mathematics ability and expectations of failure. In a more recent account on determinants of 

mathematics anxiety (i.e. the interpretation account; Ashcraft, 2019; Ramirez et al., 2018), one’s 

interpretation of previous mathematics experiences is emphasized, rather than, for example, reduced 

competency, and as such, this model also hints to metacognitive mechanisms. In line with this, Tobias 

(1986) hypothesized that being metacognitively aware of one’s (poor) performance may increase 

feelings of pressure and mathematics anxiety. On the other hand, Morsanyi et al. (2019) suggested that 

mathematics anxiety may lead to a biased interpretation of one’s own performance. 

In spite of these frequent suggestions of a potential interrelation between metacognitive monitoring 

and mathematics anxiety, rigorous, empirical research on the developmental associations of these 

potentially interrelating processes and the impact thereof in arithmetic is lacking, especially in primary 

school children. The existing literature offers some suggestions, as cross-sectional associations have 

been observed between test anxiety and metacognitive skilfulness in secondary school students 

(Veenman et al., 2000), between mathematics anxiety and metacognition in Chinese 10-year-olds and 

Turkish 12-year-olds word problem solving (Lai et al., 2015; Özcan & Gümüs, 2019), in university 

students in arithmetic (Legg & Locker, 2009) and in their general mathematics achievement (Erickson 

& Heit, 2015). However, associations between metacognitive monitoring and mathematics, and between 

mathematics anxiety and mathematics are already observed in the early grades of primary school. It 

therefore remains unclear how metacognitive monitoring and mathematics anxiety are related to each 

other and to mathematical achievement in early primary school children, in whom these processes are 

in the midst of development. Even more critical, none of the abovementioned studies has collected 

longitudinal data, which renders claims on the developmental dynamics of the associations problematic. 

Within the current dissertation, these outstanding questions were tackled by using a longitudinal panel 

design to examine the associations between metacognitive monitoring, mathematics anxiety and 

arithmetic achievement in primary school children. 
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5.2 Specificity in domain-generality? 

Metacognitive monitoring is generally considered to be a domain-general process that is a critical 

correlate and predictor of cognitive performance and learning in diverse domains (e.g. Annevirta et al., 

2007; Block & Peskowitz, 1990; Efklides & Misailidi, 2010; Freeman et al., 2017; Kuhn, 2000; Lyons 

& Ghetti, 2013; Özsoy, 2011; Rinne & Mazzocco, 2014; Schneider, 1998; Schneider & Artelt, 2010; 

Schraw et al., 2006; Veenman et al., 2006, 2004). Yet, as indicated above, the extent to which a process 

is domain-general can differ, and can also change over time. For example, the importance of 

metacognitive monitoring might differ in different (academic) domains (e.g. mathematics, reading). 

Educationally relevant, outstanding questions are whether metacognitive monitoring in academic 

performance is domain-specific or whether it reflects a more general performance monitoring process, 

and whether this might change over primary school development. Research investigating this issue in 

rather distant domains (e.g. emotion versus numerical domain; Vo et al., 2014) provides evidence that 

metacognitive monitoring is first domain-specific, that domain-generality of metacognitive monitoring 

emerges over development and that a gradual shift from domain-specific towards domain-general 

metacognitive monitoring occurs in children aged between 8 and 13 (Geurten et al., 2018). Importantly, 

over development, evidence for some domain-specificity of metacognitive monitoring remains (e.g. 

Garcia et al., 2016; Lingel et al., 2019; Löffler et al., 2016; Schraw et al., 1995).  

To thoroughly investigate the extent to which metacognitive monitoring of academic performance is 

a more domain-specific or domain-general process, this should be examined in related, yet distinct 

academic domains. Studying this in two highly related academic domains ensures a more stringent 

empirical test of the possible limits of domain-specificity of metacognitive monitoring, as domain-

specificity is much harder to ascertain in related domains compared to distant domains for which such 

specificity might, on a surface level, be more easily observed (e.g. numbers vs. emotions). In this 

dissertation, two quintessential academic domains in primary school education were investigated, in 

which primary school children go through crucial developmental steps, namely arithmetic and spelling. 

Determining the developmental trajectory of whether and how metacognition generalizes across 

domains is crucial, from a theoretical perspective, as it sheds light on how metacognition develops 

throughout childhood and thus furthers our understanding of the functioning and cognitive architecture 

of metacognition. Furthermore, it is also crucial from a practical perspective, as determining when 

metacognition becomes domain-general, and which conditions drive such a generalization, could have 

important influences on, for example, how metacognition can be stimulated through educational 

practice. The current dissertation aims to provide a first step towards an understanding of the domain-

specificity or –generality of metacognition by focusing on a narrow age range in which this development 

could occur, in related and highly relevant domains for children’s academic development, i.e. arithmetic 

and spelling. 
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5.3 Metacognition-related brain activation during arithmetic? 

An important part of the research on arithmetic has been done using brain imaging techniques (see 

Peters & De Smedt, 2017, for a review). While cognitive neuroscience has made considerable progress 

in understanding the neurobiological basis of cognitive performance in several academic domains, such 

as arithmetic, much less is known about how the brain generates metacognitive awareness of task 

performance. Within the context of the topic of the current doctoral project, i.e. the role of metacognition 

in arithmetic, examining the underlying neurocognitive architecture supporting metacognitive abilities 

in children is particularly promising. This is because, on the one hand, in the neuro-imaging literature 

on metacognition in adults, metacognition is considered a higher brain function that strongly depends 

on the prefrontal cortex or PFC (see Pannu & Kaszniak, 2005 and Shimamura, 2000, for reviews; see 

Vaccaro & Fleming, 2018, for a meta-analysis). On the other hand, arithmetic recruits a large set of 

interconnected areas, including prefrontal, posterior parietal, occipital-temporal and hippocampal areas 

(Peters & De Smedt, 2017, for a review), and many fMRI studies have pointed to the involvement of 

the prefrontal cortex control processes in arithmetic (e.g. Menon, 2015). Many suggestions on the 

interpretation of this prefrontal activity during arithmetic have been made in the existing literature, and 

one process often referred to is metacognition. While many researchers have suggested this prefrontal 

activation could partially reflect metacognitive (monitoring) processes (e.g. Ansari et al., 2005; 

Arsalidou et al., 2018; Houdé et al., 2010; Kaufmann et al., 2006, 2011; Kucian et al., 2008; Menon, 

2015; Rivera et al., 2005), this suggestion has never been empirically tested. Given the central role of 

metacognitive processes, such as metacognitive monitoring in academic learning, and the behavioural 

work that has revealed that metacognitive monitoring is a unique predictor of individual differences in 

arithmetic in children (e.g. Rinne & Mazzocco, 2014), this suggestion is not far-fetched and empirical 

research into this is thus warranted.  

To properly empirically study this suggested overlap, first, the neurobiological basis of 

metacognitive monitoring in children in a higher-order processing domain, such as arithmetic, should 

be examined. This is important, as the current evidence on the neurobiological basis of metacognitive 

monitoring is based on research in adults, and was almost exclusively done in lower-level processing 

domains (e.g. perception; Vaccaro & Fleming, 2018). Crucially, developing brains of children differ 

from those of adults. Furthermore, there is evidence to suggest that there is specificity, i.e. regional 

specialization within the PFC, concerning the neurobiological basis of metacognition with respect to 

metacognitive processes in different tasks and domains (e.g. Baird et al., 2013; McCurdy et al., 2013). 

Therefore, results obtained in adults in lower-level processing domains cannot be generalized to the 

neurobiological basis of metacognitive monitoring in children in arithmetic without thorough empirical 

investigation (see Ansari, 2010, for a similar discussion). Therefore, in this dissertation I empirically 

investigated which brain regions are involved in engaging in metacognitive monitoring within a higher-

order cognitive processing domain (i.e. arithmetic), in primary school children. This allows to further 
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our understanding of not only the neurobiological basis of metacognitive monitoring in children, but 

also the prefrontal activation found during the process of arithmetic, which has been suggested to at least 

partially reflect metacognitive processes.  

Importantly, this dissertation encompassed a large dataset of longitudinal behavioural data on 

metacognitive monitoring in a group of primary school children. In the neuro-imaging study, the exact 

same paradigm as in the behavioural studies, in the same children was used. The combination of 

longitudinal behavioural data and the neuro-imaging data on this topic in the same children, additionally 

yields a unique research opportunity, as it allows to investigate the associations between brain activation 

during metacognitive monitoring and development in arithmetic performance over a three-year period. 

As such, the current dissertation aims to better understand individual differences in arithmetic and 

neurobiological processes that play a role when children learn school-relevant skills, in this case 

arithmetic. To improve the existing literature, there is a need for these kind of developmental brain 

imaging studies, investigating children at ages when they are acquiring a particular mathematical skill 

(Ansari & Lyons, 2016). Because these brain imaging studies posit themselves at the intersection of 

psychology, education and cognitive neuroscience, they are exceedingly promising to understand the 

neurobiological processes that play a role for educationally relevant knowledge and skills (De Smedt, 

2018; De Smedt & Grabner, 2015), as they make it possible to investigate the brain during the learning 

phase of academic skills. 

 

6 Methodology & data-analysis 

Within this dissertation, different statistical and methodological frameworks were used in order to 

comprehensively examine our research questions. On the one hand, I did not only use the well-known 

and widely used frequentist statistics, but also made use of Bayesian statistics which allows one to 

deepen the investigation in ways that are much less possible using frequentist statistics. On the other 

hand, I profited from combining behavioural research methods and neuroscientific techniques. In what 

follows, I further explain the use of these different statistical and methodological frameworks in this 

dissertation. Thereafter, I comment on how I aimed to optimize reproducibility and transparency of the 

current dissertation. Lastly, I discuss the data that were collected for this project and on which the 

scientific conclusions were based. 

6.1 Frequentist & Bayesian statistics 

The use of frequentist analyses allowed me to explore the data by means of a well-known method to 

gauge statistical support for the hypotheses of interest. However, this null hypothesis significance testing 

relying on p-values has a number of statistical limitations (e.g. Andraszewicz et al., 2015). For example, 

p-values cannot quantify evidence in favour of a hypothesis, they only signal the extremeness of the 

data under the null hypothesis. The goal in frequentist statistics is to decide whether a particular value 
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of a model parameter can be rejected. The p-value logic thus resembles a proof by contradiction: Low 

p-values indicate extreme data and usually lead researchers to reject the null hypothesis and interpret 

this as evidence in favour of the alternative hypothesis (Andraszewicz et al., 2015). Unlike null-

hypothesis testing, Bayesian statistics allows one to test of the degree of support for a hypothesis (i.e. 

degree of strength of evidence in favour of or against any given hypothesis). This is expressed as the 

Bayes factor (BF), which is the ratio between the evidence in support of the alternative hypothesis H1 

over the null hypothesis H0 (BF10). By comparing the fit of the data under the null hypothesis to the 

alternative hypothesis, Bayes factors quantify the evidence in favour of these hypotheses. For example, 

a Bayes factor of 10 (BF10 = 10) suggests that the alternative hypothesis is 10 times more likely than the 

null hypothesis. Although Bayes factors provide a continuous measure of degree of evidence, there are 

some conventional approximate guidelines for interpretation (see Andraszewicz et al., 2015, for a 

classification scheme): BF10 = 1 provides no evidence either way, BF10 > 1 anecdotal, BF10 > 3 moderate, 

BF10 > 10 strong, BF10 > 30 very strong and BF10 >100 decisive evidence for the alternative hypothesis; 

BF10 < 1 anecdotal, BF10 < 0.33 moderate, BF10 < 0.10 strong, BF10 < 0.03 very strong and BF10 < 0.01 

decisive evidence for the null hypothesis. By adding these analyses, I aimed to deepen the findings from 

the traditional analyses, as I was able to identify which hypotheses were (not) supported, and, 

consequently, which hypothesis is most plausible and which predictors are the strongest. This was 

particularly relevant for the current dissertation, because one could, for example, compare the strength 

of evidence in favour of the unique role in arithmetic of the different processes under study, and compare 

the evidence in favour of different hypotheses (e.g. domain-specific hypothesis versus domain-general 

hypothesis of metacognitive monitoring in arithmetic). The use of Bayesian statistics allowed me to 

provide evidence for the null hypothesis, for example, to indicate a process does not uniquely explain 

variance in arithmetic on top of the other considered processes. 

6.2 Correlational, individual differences approach 

Within this dissertation, I have used both cross-sectional and longitudinal designs and different 

analytical techniques, aiming to provide a more comprehensive understanding of individual differences 

in arithmetic performance and development, numerical magnitude processing, executive functions, 

metacognition and mathematics anxiety. 

To follow a group of children from second to third and half of that sample to fourth grade of primary 

school, I used a longitudinal panel design, in which the same measures of all investigated processes were 

administered at the different time points. Crucially, the use of this design allows to investigate 

development of the associations over time. This is essential given the fact that we investigated these 

processes in a crucial developmental time, namely primary school. As such, stability of the associations 

could be investigated, as well as longitudinal associations between the investigated processes. Going 

one step further, the use of a panel longitudinal design allows to take into account autoregressive effects 

(e.g. the role of prior arithmetic performance for later arithmetic performance) when investigating the 
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associations between (meta)cognitive and affective processes and arithmetic. Hence, by means of this 

longitudinal panel design, I was able to provide indications of the direction of the associations and of 

whether the investigated processes contribute specifically to the development of the outcome measure 

(e.g. arithmetic). 

In addition to using a longitudinal design, a cross-sectional design was used to collect data in two 

different age groups, namely second and third graders (i.e. 7-8 year-olds and 8-9 year-olds). The 

additional inclusion of these two samples, on top of the longitudinal follow up of a different cohort of 

the same age, enabled to investigate research questions that were not addressed within the longitudinal 

cohort. 

To analyse these data, I used different analytical techniques, ranging from widely used (e.g. Pearson 

correlation coefficients, multiple regression) to some more advanced data-analysis techniques (e.g. 

moderation analysis, mediation analysis). Using a combination of these analytical techniques, I was able 

to take up my research questions from different angles to provide a more comprehensive understanding. 

For example, mediation analyses allows to investigate potential mechanisms by which certain effects 

operated, while moderation analyses allows to investigate when, i.e. at which level of another process, 

an effect occurred between two processes.  

6.3 Neuro-imaging method 

Within this dissertation, not only behavioural methods were used to thoroughly investigate my 

research questions, I additionally used neuro-imaging techniques, which are explained in more detail 

below. Using both methods provided me with different levels of analysis and measurement of the key 

variables of interest that cannot be accessed by either behavioural or neuro-imaging data alone. 

Cognitive neuroscience offers tools, methodologies and theories to investigate (meta)cognitive 

processes that take place during mathematical thinking and learning, which may complement and extend 

knowledge that has been obtained on the basis of behavioural data only (De Smedt et al., 2010). Indeed, 

data on brain activity might add to a complementary, detailed description of the different cognitive 

(sub)processes that take place during mathematical thinking and learning.  

In line with this, the rationale to include brain data in the current dissertation, was twofold. Firstly, 

neuro-imaging techniques were used to uncover the brain basis of metacognitive monitoring processes 

in children. Secondly, and importantly, these brain data were also utilized to further our understanding 

of the prefrontal activation found during the process of arithmetic. This prefrontal activation (Peters & 

De Smedt, 2017, for a review) has been suggested to at least partially reflect metacognitive processes 

(e.g. Ansari et al., 2005), but this hypothesis has never been empirically tested. Within this dissertation, 

I made optimal use of the unique opportunity to build on the existing behavioural theory and the acquired 

behavioural data within this project, integrate this with the neuro-imaging literature on both arithmetic 

and metacognition, and specifically collect neurobiological data on this topic in the same sample of 
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children on whom a large number of developmental, behavioural data was available. This was done to 

maximize the meaningful interpretation and the relevance of the findings. 

The brain imaging data that were collected for this dissertation, were acquired by means of magnetic 

resonance imaging (MRI). MRI enables neuroscientists to create images of the brain anatomy based on 

differences in the amount of hydrogen in different tissue types, and detect task-related neural activity 

(functional MRI or fMRI) based on the proportion of oxygenated blood in the brain (Arthurs & Boniface, 

2002). It is a non-invasive neuro-imaging method that uses powerful magnets that produce a magnetic 

field. This magnetic field forces hydrogen atoms in the participant’s body to align with this static 

magnetic field, while initially hydrogen atoms are oriented randomly. The strength of the magnetic field 

is measured in units called tesla (T). Next, a Radio Frequency (RF) pulse is sent out, which disturbs the 

alignment, making the hydrogen atoms spin out of the equilibrium, and changing their spin to the 

opposite direction of the magnetic field. When the RF signal is stopped, the hydrogen atoms realign with 

the original magnetic field and release energy in the process. This release of energy is picked up and 

forms the basis of the MR signal. Different components of the MR signal are used to create different 

types of images. For example, one can distinguish between different types of tissue by using variations 

in the rate at which the hydrogen atoms realign with the magnetic field after the RF pulse (i.e. T1 

relaxation time). These T1-weighted images are typically used for structural images of the brain, i.e. 

static anatomical information. A T2 constant describes how quickly the atoms emit energy when 

recovering to equilibrium. Taken together with the fact that deoxyhemoglobin produces distortions in 

this component, this forms the basis of the images in fMRI experiments (i.e. T2* image; Ward, 2015). 

The fMRI method takes advantage of the fact that when neurons in the brain become active, the 

amount of oxygenated blood flowing through that area is increased. When neurons consume oxygen, 

they convert oxyhemoglobin to deoxyhemoglobin, which has strong paramagnetic properties. This 

change in oxygenation is measured in fMRI and is referred to as the blood oxygenation level dependent 

(BOLD) signal (Poldrack et al., 2011). fMRI measures temporary changes in brain physiology 

associated with cognitive processing, based on the Hemodynamic Response Function (HRF), i.e. the 

way that the BOLD signal evolves over time in response to an increase in neural activity. Compared to 

other brain-imaging methods, such as EEG or PET, fMRI has vastly better spatial resolution (i.e. the 

accuracy with which one can estimate the anatomical location of neural activation). Importantly, this 

hemodynamic method does not measure the activity of the neurons directly. Rather, it measures a 

consequence of neural activity, i.e. changes in BOLD signal. As the hemodynamic response peaks only 

after 4 to 5 seconds after the onset of the actual neural firing (Poldrack et al., 2011), this results in lower 

temporal resolution (i.e. the accuracy with which one can measure when an event is occurring). 

Within this dissertation, I used cognitive subtraction, a type of experimental design in fMRI in which 

activity in a control task is subtracted from activity in an experimental task. Through the comparison of 

the activity of the brain in a task tapping into a particular (cognitive) process (e.g. metacognition) with 
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the activity of the brain in a very similar control task that does not tap into that process, it is possible to 

infer which regions are specialized for this particular process (Ward, 2015). This comparison is required 

because the brain is always physiologically active, and regions of activity can only be meaningfully 

interpreted relative to a baseline or control condition. Importantly, because of the central role of the 

control condition in fMRI research, a good cognitive theory of the elements that comprise a task are 

essential. To maximally ensure this, within this dissertation, I made use of the existing behavioural 

theory and the data acquired in the context of the behavioural studies within this doctoral project. 

6.4 Reproducibility and transparency 

In line with the current, important attention that has been given to and action that has been taken for 

reproducible, transparent science, a comprehensive data-analysis plan of several of the studies within 

this dissertation was preregistered on the Open Science Framework (https://osf.io/rufxc/). The Open 

Science Framework (OSF) is a free and open source project management and collaboration tool, and 

workflow system, which is developed and maintained of the Center for Open Science (COS). The COS 

aims to increase openness, integrity and reproducibility of research (Foster & Deardorff, 2017). In my 

preregistrations on the OSF, I provided background information on the study, the existing literature on 

the study topic, the rationale for the analyses, and, importantly, I specified in detail which analyses 

would be performed to answer the research questions. Additionally, I provided the full cognitive testing 

battery of each preregistered study on the OSF page of each project.  

6.5 Data overview 

The data included in the following chapters were all specifically collected for this doctoral project 

by the author. The current doctoral thesis includes data of one longitudinal cohort and two age groups 

in the context of a cross-sectional design. In the longitudinal cohort, originally 127 primary school 

children were included. When these children were in the middle of second grade (7-8 year-old), a large 

battery of (meta)cognitive and affective data was acquired. One year later, in the middle of third grade, 

the same battery of tasks was administered (8-9 year-old) in 121 of the 127 children who participated in 

the first data collection. At the end of fourth grade, MRI data were acquired in 55 of these children (9-

10 year-old), whose parents gave consent for their children to participate in the MRI study. The cross-

sectional cohorts consisted of 147 third graders (8-9 year-old) and 77 second graders (7-8 year-olds). 

Similar to in the longitudinal cohort, in these cohorts a large battery of (meta)cognitive data was 

acquired. These two groups of participants were recruited to investigate research questions that were not 

addressed within the longitudinal cohort.  

  

https://osf.io/rufxc/
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7 Research aims & outline of the doctoral dissertation 

Prior research has uncovered large individual differences in children’s arithmetic performance and 

development (e.g. Dowker, 2005, 2019c). While firstly, I aimed to increase our understanding of the 

complex interacting roles of key processes that have been identified as important for arithmetic 

performance and development, the ultimate purpose of the current collection of studies was to provide 

a deeper, more comprehensive understanding of the role of metacognition in arithmetic. After 

metacognitive monitoring was identified as a very promising predictor of arithmetic on top of other key 

processes, I aimed to more thoroughly investigate its role in arithmetic performance and development 

in detail. Through different studies, I examined this role of metacognitive monitoring in arithmetic in 

addition to other important cognitive and affective processes in primary school children. I further studied 

the extent to which this role of metacognitive monitoring was domain-specific or domain-general in 

different age groups in primary school. Finally, the role of metacognitive monitoring was studied both 

at the behavioural and neurobiological level to further our understanding of the underlying 

neurocognitive architecture supporting metacognitive abilities in children as well as the arithmetic brain 

network in children. The five specific research aims addressed in the current doctoral project are 

discussed in detail below. 

 

7.1 Research Aim 1: Simultaneous investigation of the role of numerical magnitude processing, 

executive functions and metacognition in arithmetic in primary school children (Chapter 2). 

The associations between different (meta)cognitive processes (e.g. numerical magnitude processing, 

executive functions, metacognition) and arithmetic have been extensively investigated in isolation. In 

contrast to this extensive body of research, little attention has been paid to examining the joint effects 

of different (meta)cognitive, domain-specific and domain-general processes in arithmetic. Especially in 

primary school children this research is limited, yet these children are in the middle of a crucial 

developmental period for both arithmetic and (meta)cognitive processes. The first research aim of the 

current doctoral project was to tackle this gap in the literature by simultaneously studying numerical 

magnitude processing skills, executive functions, metacognitive knowledge and skills and arithmetic 

performance of 7-8 year-old children (second grade of primary school) and as such unravel the unique 

contributions of these processes to individual differences in arithmetic performance. This first research 

aim provides the groundwork for the following research aims included in this dissertation. 
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7.2 Research Aim 2: Assessing the longitudinal interplay between numerical magnitude processing, 

executive functions, metacognition and arithmetic in primary school children (Chapter 3). 

When the role of (meta)cognitive processes in arithmetic is investigated, studies mostly use 

concurrent or sometimes cross-sectional research designs. Yet, using a longitudinal design has major 

advantages, as this design, especially a longitudinal panel design, allows researchers to thoroughly 

investigate stability of results over (developmental) time, examine predictive associations between 

variables and take into account prior performance. Consequently, the second research aim of the current 

doctoral project was to additionally uncover developmental dynamics within these associations, using a 

longitudinal design. This was done by building on the study of the first research aim. To fully grasp 

crucial developmental periods of the key processes investigated, primary school children were followed 

up from second to third grade (i.e. 7-9 year-old). Using a longitudinal panel design, the current aim was 

to unravel the stability of the associations found in early primary school over time, to uncover the 

longitudinal associations of symbolic numerical magnitude processing, executive functions and 

metacognition with arithmetic, and to investigate these predictive associations when taking prior 

arithmetic performance into account. 

 

7.3 Research Aim 3: Examining the longitudinal interplay between metacognitive monitoring, 

mathematics anxiety and arithmetic in primary school children (Chapter 4). 

Although there is a large body of research on the role of affective processes such as mathematics 

anxiety (studied in isolation), there is a lack of inclusion of such affective processes in studies 

investigating (meta)cognitive processes in arithmetic. This results in an incomplete understanding of the 

role of both processes in arithmetic. Especially concerning the interplay between metacognitive 

monitoring and mathematics anxiety in young primary school children, the lack of simultaneous 

investigating of these processes is worrisome, because these processes are both related to thinking about 

your performance, and, in primary school, crucial development occurs for both metacognitive 

monitoring and mathematics anxiety. Within the current doctoral project, the third research aim was 

therefore to simultaneously consider metacognitive monitoring, mathematics anxiety and arithmetic 

achievement in young primary school children using a longitudinal panel design. Going beyond 

traditional correlational analyses and regression models, I used mediation and moderation models to 

further our understanding of the developmental dynamics of these processes in young primary school 

children, which is critical to develop effective educational interventions. 
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7.4 Research Aim 4: Investigating the domain-specificity of the role of metacognitive monitoring 

across domains in primary school children (Chapter 5). 

As was amply shown in the literature, metacognitive monitoring is important in different academic 

domains. In adults, associations were found between monitoring in these different domains, pointing 

toward domain-generality, while in children, such associations seem to be absent, pointing to domain-

specificity. Furthermore, research has suggested a shift from more domain-specificity towards domain-

generality of metacognitive monitoring throughout primary school. Importantly, research on this topic 

is mostly based on empirical investigation in rather distant domains. I deliberately included a different, 

yet correlated academic domain (i.e. spelling) in addition to arithmetic, to thoroughly investigate the 

extent to which metacognition might be domain-specific or domain-general and whether a gradual shift 

towards more domain-generality occurs in primary school. Additionally, the domains were chosen 

because of their high relevance for primary school children. Importantly, domain-generality and domain-

specificity of processes are not all-or-nothing concepts. As such, in line with the general aim of this 

dissertation to investigate the role of metacognitive monitoring in arithmetic, the fourth research aim 

was to examine to what extent this association was domain-general and/or domain-specific.  

 

7.5 Research Aim 5: Uncovering the neurobiological basis of metacognitive monitoring during 

arithmetic in the developing brain (Chapter 6). 

Metacognition is considered a higher brain function that strongly depends on the prefrontal cortex. 

Yet, this knowledge is based on studies in the adult population and on monitoring in lower-level 

cognitive processes, such as perceptual decisions. Therefore, the results cannot be generalized to the 

neurobiological basis of metacognition in children in academic domains without thorough empirical 

investigation. By combining neuro-imaging data with the insights from the behavioural work in this 

dissertation, the fifth research aim of this dissertation was to empirically investigate which brain regions 

are involved in engaging in metacognitive monitoring within a higher-order cognitive processing 

domain of arithmetic, and to do so in primary school children. Additionally, this sheds light on the 

frequently suggested, but never empirically tested, hypothesis that metacognitive monitoring processes 

could partially explain the increases in prefrontal activation that are often observed when doing 

arithmetic. 

 

To conclude, in Chapter 7, the findings of these doctoral dissertation are discussed, standing still at 

potentially fruitful avenues for future research. The discussion of the scientific contribution of the 

abovementioned studies is followed by a discussion of both theoretical and methodological as well as 

educational considerations. 

  



 

 

 

 

 

 

 

CHAPTER 2 

More than number sense 

The additional role of executive functions and metacognition in arithmetic. 
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Chapter 2 

More than number sense: 

The additional role of executive functions and 

metacognition in arithmetic. 

 

Abstract 

Arithmetic is a major building block for children’s development of more complex mathematical 

abilities. Knowing which cognitive factors underlie individual differences in arithmetic is key to gaining 

further insight into children’s mathematical development. The current study investigated the role of 

executive functions and metacognition (domain-general cognitive factors) as well as symbolic numerical 

magnitude processing (domain-specific cognitive factor) in arithmetic, enabling the investigation of 

their unique contribution in addition to each other. Participants were 127 typically developing second 

graders (7- and 8-year-olds). Our within-participant design took into account different components of 

executive functions (i.e. inhibition, shifting, and updating), different aspects of metacognitive skills (i.e. 

task-specific and general metacognition), and different levels of experience in arithmetic, namely 

addition (where second graders had extensive experience) and multiplication (where second graders 

were still in the learning phase). This study reveals that both updating and metacognitive monitoring are 

important unique predictors of arithmetic in addition to each other and to symbolic numerical magnitude 

processing. Our results point to a strong and unique role of task-specific metacognitive monitoring skills. 

These individual differences in noticing one’s own errors might help one to learn from his or her 

mistakes. 
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Introduction 

  Whereas waiters know within seconds how much the different drinks you ordered cost together, 

others shudder when only thinking about math class. Experience with mathematics could be a part of 

the explanation for these huge differences in math skills in adults, yet these differences already appear 

early in development (e.g. Duncan et al., 2007). An extensive body of literature demonstrates that there 

are large individual differences in the way children acquire mathematical abilities (e.g. Berch et al., 

2016). When looking for cognitive explanations for these differences, research has investigated both 

domain-general cognitive factors (i.e. factors relevant for learning various academic skills) and domain-

specific cognitive factors (i.e. factors specifically relevant for mathematics learning) (e.g. Geary & 

Moore, 2016; Vanbinst & De Smedt, 2016b), yet these types of factors have been investigated in relative 

isolation from each other. Over the past decade, research has mainly focused on one domain-specific 

cognitive skill, numerical magnitude processing (i.e. children’s elementary intuitions about quantity and 

the ability to understand the meaning of numbers), as a core factor of individual differences in 

mathematical abilities (e.g. see De Smedt et al., 2013, for a review; see Schneider et al., 2017, for a 

meta-analysis). By narrowing its scope in this way, this research ignores other critical, particularly 

domain-general, cognitive factors that might play a role in (a)typical mathematical development (see 

Fias et al., 2013). Schneider and colleagues (2017) revealed in their meta-analysis that the overall 

correlation between numerical magnitude processing and mathematical competence was only r = .278, 

suggesting that numerical magnitude skills explain a significant but only small part of the variance in 

mathematical abilities. Consequently, other important factors that drive these individual differences 

need to be considered. 

Some potentially important factors have been identified such as working memory (e.g. Peng et al., 

2016) and other executive functions (e.g. Bull & Lee, 2014). However, the precise roles of these factors 

in mathematics in addition to numerical magnitude processing remain unclear. Executive functions refer 

to a family of top-down mental processes needed when one needs to concentrate and pay attention 

(Diamond, 2013), skills required to monitor and control thought and action, processes that allow one to 

respond flexibly to his or her environment and engage in deliberate, goal-directed thought and action 

(Cragg & Gilmore, 2014). Executive functions mainly consist of the processes of inhibition, shifting, 

and updating (e.g. Miyake et al., 2000). Inhibition refers to one’s ability to control his or her attention, 

behaviour, and thoughts to override a strong internal predisposition or external lure and instead do what 

is more appropriate or needed (Diamond, 2013). Two types of inhibition can be distinguished, namely 

response inhibition (i.e. control over one’s behaviour and emotions in the service of controlling one’s 

behaviour to resist temptations and not act impulsively) and interference control (i.e. the ability to 

selectively attend, focusing on what one chooses and suppressing attention to other stimuli). Shifting is 

defined as the disengagement of an irrelevant task set or strategy and the subsequent initiation of a new, 
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more appropriate set (van der Sluis et al., 2007). Updating involves holding information in working 

memory and flexibly manipulating it (Baddeley & Hitch, 1994). 

Although the existing literature has provided some understanding about the association between 

executive functions and mathematics (e.g. Cragg & Gilmore, 2014), there is insufficient insight into the 

specificity of these associations. Some studies found a significant association between executive 

functions and mathematics, whereas others did not (e.g. Bull & Lee, 2014; Cragg & Gilmore, 2014; 

Friso-Van Den Bos et al., 2013). 

This inconclusiveness might be explained by four limitations in the existing literature. First, 

mathematical ability consists of various different abilities (e.g. arithmetic, problem solving, geometry), 

all of which could be differently related to certain cognitive factors (e.g. see Cragg & Gilmore, 2014, 

for a critical discussion). Consequently, focusing on different math subcomponents or tasks could be the 

reason for these discrepancies in existing research. For example, Gilmore et al. (2015) found different 

associations between inhibition and specific components of mathematics. Therefore, investigating 

specific mathematical skills is essential when investigating which cognitive factors predict the 

development of mathematical skills. The current study focused on arithmetic, a major building block for 

children’s development in more complex mathematical abilities (Kilpatrick et al., 2001). The association 

between executive functions and arithmetic is theoretically appealing. For example, cognitive inhibition 

(i.e. interference control) might play a role in arithmetic given that arithmetic facts are stored in an 

associative network in semantic memory (e.g. Verguts & Fias, 2005) and, thus, are particularly prone to 

interference because of the number of features they share (De Visscher & Noël, 2014b). Hence, during 

arithmetic, incorrect but competing answers need to be inhibited. On the other hand, good executive 

functioning might help to suppress inefficient arithmetic strategies in favour of more efficient ones (e.g. 

using a decomposition of operands strategy instead of finger counting) or might help to keep 

intermediate solutions in mind and manipulating them while calculating (i.e. updating). 

Second, the discrepancy between results on the relation between executive functions and 

mathematics might be due to the multi-componential nature of executive functions. Executive 

functioning includes different dimensions, yet many studies take only one subcomponent into account. 

Different components of executive functions are differently related to mathematics (Bull & Lee, 2014; 

Cragg et al., 2017). Because there is both unity and diversity in the executive functioning components 

(Friedman & Miyake, 2017; Lee et al., 2013), it is important to investigate them simultaneously. In this 

study, we included all three well-known components of executive functions, namely inhibition, shifting, 

and updating. 

Third, the inconclusiveness might be due to the fact that relevant moderating variables have been 

overlooked. One such variable that has often been neglected in theoretical models of executive functions 

(see Desender et al., 2014, for a critical discussion), but has received a lot of attention in more general 
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educational research (e.g. Schneider & Artelt, 2010), is metacognition. Metacognition was first 

introduced by Flavell (1979) as a broader concept that encompasses monitoring and regulation of 

cognitive performance. It involves the ability to assess one’s own cognitive knowledge and ability (Vo 

et al., 2014) and how people monitor and control their cognition on-task (Bryce et al., 2015). An 

important distinction is made between metacognitive monitoring and metacognitive control (Flavell, 

1979; Nelson & Narens, 1990). The former is the meta level that is informed by the object level, and the 

latter is the meta level that modifies the object level, with the object level being the cognitive process or 

task at hand. Metacognition can be measured by means of general metacognitive knowledge/skills 

measures (e.g. Haberkorn et al., 2014) or by asking participants to indicate their confidence on a task-

specific level (e.g. Rinne & Mazzocco, 2014). 

The association between metacognition and general academic performance has been extensively 

studied. Vo et al. (2014) found that children’s metacognitive ability in the numerical domain predicted 

their general school-based mathematics knowledge and suggested that children’s metacognition is a 

domain-dependent cognitive ability in children. Freeman et al. (2017) found that calibration of 

confidence in a working memory task was related to academic achievement. Some studies have 

specifically focused on the association between metacognition and arithmetic. At a theoretical level, 

Shrager and Siegler (1998) identified a metacognitive system in their model of children’s strategy 

choices and discoveries in arithmetic (i.e. SCADS [strategy choice and discovery simulation] model), 

where a confidence criterion (i.e. a randomly varying threshold for stating a retrieved answer) was one 

of the most important probabilistic components. Rinne and Mazzocco (2014) more recently showed that, 

in children in late elementary school, on-task metacognitive judgments were strongly related to 

concurrent mental arithmetic and that early metacognitive monitoring ability predicted subsequent 

growth in mental arithmetic performance. However, it remains to be determined whether these 

associations remain when the different aspects of executive functions as well as numerical magnitude 

processing are included and whether the same associations can be observed in younger children. 

Importantly, metacognition and executive functions are closely linked. Both are higher-order factors 

related to the regulation of behaviour, they share theoretical features (e.g. controlled processing), they 

undergo similar developmental trajectories, and they are associated with comparable brain regions 

(Roebers & Feurer, 2016). Metacognition plays a critical role in executive functioning processes because 

subjective experiences (i.e. metacognition) allow for top-down control of behaviour (Desender et al., 

2014). Indeed, effective executive functioning requires an accurate determination of when and which 

type of control is needed. On the other hand, Bryce et al. (2015) suggested that executive functions 

might be necessary but not sufficient antecedents to metacognitive skills. Lyons an Zelazo (2011) 

characterized metacognitive monitoring as a reflective process. This reflective process is explicitly 

conceptualised as an integral part of metacognition (Nelson & Narens, 1990) but is only implicitly 

assumed to take place in executive functions, for which post-error slowing can be an indicator. Because 
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executive functions and metacognition skills are closely related (see Roebers, 2017, for a review), the 

lack of inclusion of metacognition in existing studies on the association between mathematics and 

executive functions may have led to inconclusive results. 

Lastly, the inconclusiveness in the current literature on the association between executive functions 

and mathematics might be due to the age of the participants. Because arithmetic (e.g. Vanbinst, 

Ceulemans, et al., 2015), executive functions (e.g. Carlson et al., 2013), and metacognition (e.g. 

Schneider, 2010) are still in the midst of development during primary school, different associations 

might be present at different ages. Executive functioning develops substantially during primary school 

(e.g. Diamond, 2013), with increases in inhibition, shifting, and updating skills allowing for better 

executive functioning along with increasing automaticity and efficiency (Carlson et al., 2013). Executive 

functioning depends on neurobiological networks involving the prefrontal cortex that continue to 

improve into early adulthood. Metacognition also relies on the prefrontal cortex (Fleming & Dolan, 

2014) and continues to develop through primary school (e.g. Schneider, 2015a; Schneider & Lockl, 

2008). 

Arithmetic skills also show large development in primary school, and a gradual change from 

procedural strategies to retrieval of arithmetic facts is observed (Siegler, 1996). This might lead to 

different associations with executive functions and metacognition over time. For example, the need for 

inhibition skills might be particularly high when children have already learned (some) arithmetic facts 

because similarity between these facts provokes interference (De Visscher & Noël, 2014a). 

Consequently, the association between executive functions and arithmetic could change across 

development. One prediction might be that inhibition skills have a time-limited role in arithmetic; at the 

early stages of the development from procedural strategies to full automatization of arithmetic fact 

retrieval, more interference control skills will be needed, whereas at the end of development the need 

for control would be lower as a semantic network is automatically activated (see Moors & De Houwer, 

2006 and Siegler, 1996, for a theoretical discussion). 

Because these three cognitive factors (i.e. arithmetic, executive functions, and metacognition) 

develop dramatically throughout primary school, the association of executive functions and 

metacognition with arithmetic might be variable across development. Hence, the level of experience in 

arithmetic is important to take into account when examining the association among executive functions, 

metacognition, and arithmetic. Accordingly, in this study, for second graders we included an arithmetic 

operation with which they had extensive experience (i.e. addition) and for which retrieval of single-digit 

arithmetic items is very high (De Smedt, 2016) as well as an operation for which participants were in 

the learning phase (i.e. multiplication) and there is no full automatization of fact retrieval present yet. 
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1 The current study 

Little attention has been paid to investigating the joint effects of domain-specific and domain-general 

correlates of arithmetic. In addition, it is not clear how these factors are associated in young children 

(i.e. early elementary school) and, consequently, how these factors play a role in function of lesser versus 

greater experience in arithmetic. To tackle this important gap in the literature, the current study in 

typically developing second graders investigated executive functions (by using a more fine-grained 

operationalisation including inhibition, shifting, and updating through the use of tasks that tap into those 

different aspects) and metacognition (both general metacognitive knowledge and on-task metacognitive 

monitoring) as domain-general cognitive factors and symbolic numerical magnitude processing as a 

domain-specific cognitive factor, examining their unique contributions to arithmetic (i.e. addition and 

multiplication) using a within-participant design. We specifically recruited second graders to examine 

these associations in arithmetic operations with which they had extensive experience (addition) and for 

which they were still in the learning phase (multiplication). 

We predicted that executive functioning would be associated with arithmetic (i.e. better executive 

functioning is associated with better, faster, and more accurate arithmetic performance). Specifically, 

we expected the strongest association to be between inhibition skills and the arithmetic task with which 

participants had the most experience (i.e. addition). Second, we predicted that metacognition would be 

an important predictor of arithmetic (i.e. better metacognitive skills are associated with better arithmetic 

performance). Based on the suggestion of domain-dependent metacognitive abilities, we predicted that 

this association would be the strongest for the on-task metacognitive monitoring. Third, we predicted 

that executive functions, metacognition, and symbolic numerical magnitude processing each would 

explain unique variance in individual differences in arithmetic. 
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Method 

1 Participants 

Participants were 127 Flemish second graders (64 girls and 63 boys; Mage = 7 years 11 months, 

SD = 4 months, range = 7 years 4 months to 8 years 5 months). They all were typically developing 

children who had no diagnosis of a developmental disorder, and had a dominantly middle-to-high 

socioeconomic background. For every participant, written informed parental consent was obtained. The 

study was approved by the social and societal ethics committee of KU Leuven. 

2 Materials 

Materials consisted of standardized tests, paper-and-pencil tasks, and computer tasks designed with 

E-Prime 2.0 (Schneider et al., 2002) and Affect 4.0 (Spruyt et al., 2009). 

 

2.1 Arithmetic 

Arithmetic was assessed with two single-digit computerized production tasks, namely addition and 

multiplication. Additions and multiplications were presented in separate tasks. Arithmetic problems with 

0 and 1 as one of the operands were excluded. Both the addition and multiplication items comprised all 

combinations of the numbers 2–9 as operands, and all commutative pairs (e.g. 3 + 9 and 9 + 3) were 

presented, yielding 64 additions and 64 multiplications. After fixation, stimuli occurred for 2000 ms in 

white on a black background (Arial font, 72-point size). Afterwards, a black screen appeared until 

response. Children were asked to answer verbally and as quickly and accurately as possible. This 

specific protocol was used to foster retrieval and increase the likelihood of making errors (see below). 

The experimenter registered the response time (RT) and answers via the computer. For each task, stimuli 

were pseudo-randomly divided into two blocks (i.e. one of each commutative pair in each block). During 

the second block of each arithmetic task, a specific metacognitive monitoring measure was added to the 

task (see below). Each task began with 6 practice items to familiarize the children with the task 

requirements. Performance measures were the average RT and accuracy of the answers, which were 

calculated for each operation separately. 

2.2 Executive functions 

Executive functioning was measured with inhibition, shifting, and updating tasks. None of the 

executive functioning tasks included numerical stimuli, which allowed us to investigate executive 

functions without numerical processing confounds. 

Inhibition. We used a classic arrow Flanker task (Eriksen & Eriksen, 1974; Huizinga et al., 2006), a 

speeded choice reaction time task where participants needed to respond to target stimuli (i.e. a left or 

right pointing arrow presented at the centre of the screen) flanked by distractors (i.e. two arrows on each 
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side of the target). These four distractor arrows either pointed in the same direction as the target, and 

thus indicated the same response (i.e. or ; congruent condition), or in the 

opposite direction, and thus indicated the response that was incompatible with the target (i.e. 

 or ; incongruent condition). Children needed to indicate the direction of the 

middle arrow by pressing the corresponding key (i.e. left/right key) while suppressing the direction of 

the distractors. In total, 40 test items were administered, with 50% of the items being incongruent and 

the direction of the middle arrow being balanced. After fixation, stimuli appeared for 2500 ms, followed 

by a black screen that remained visible for 1000 ms. Before the task started, 12 trials were presented—

used as a baseline condition for the analyses of this task—on which only one arrow was presented in the 

centre of the screen (neutral condition). Children needed to indicate the direction of the arrow. RT and 

accuracy of the answers were registered by the computer. 

We also used an animal Stroop task (based on Szűcs et al., 2013). The task consisted of comparing 

two simultaneously presented images of coloured animals arranged on either side of the centre of the 

screen. One animal was selected from a set of large animals (e.g. giraffe, moose), and the other was 

selected from a set of small animals (e.g. rabbit, frog). Participants needed to select the animal that was 

larger in real life by pressing the corresponding key (i.e. left/right key). They were required to ignore 

the size of the images on the screen and to respond based on the animal size in real life only. To ensure 

that all children had the real-world knowledge needed for this task, participants were shown the animal 

images one by one in a standard size prior to the task and were asked whether the animal was large or 

small in real life. After this, children were presented with 20 trials—used as a baseline condition for the 

analyses of this task—in which the animals occupied the same area on the screen (neutral condition). 

On each test trial, one animal image was presented with an area on the screen four times larger than the 

other image. This yielded two conditions (Figure 2.1): a congruent condition (i.e. larger animal in real 

life = larger image on the screen) and an incongruent condition (i.e. larger animal in real life = smaller 

image on the screen). The position of the larger animal (both in real life and the size of the image) was 

balanced. In total, 40 test trials were administered, with 50% of the items being incongruent and items 

being presented in a random order. After fixation, stimuli appeared for 2000 ms, followed by a black 

screen that remained visible for 1000 ms. RT and accuracy of the answers were registered by the 

computer. 
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Figure 2.1. Examples of stimuli for the animal Stroop task. Left: congruent condition; Right: 

incongruent condition. 

Because both accuracy and RT constitute essential parts of inhibition, we calculated inverse 

efficiency (IE) scores (i.e. RT divided by accuracy) for both inhibition tasks. These scores were used as 

a performance measure for both tasks (see also online supplementary material). The use of two inhibition 

tasks enabled us to differentiate between the information that needs to be inhibited in the two tasks, i.e. 

visually, stimulus driven information in the Flanker task vs. linked to acquired knowledge in the animal 

Stroop task. 

Shifting. To measure shifting skills, we used the Wisconsin Card Sorting Task (WCST; Grant & 

Berg, 1948). In this sorting task, participants needed to determine how to sort cards on the basis of 

unspecified categories (i.e. shape and colour). We used only two sorting rules from the original WCST 

to minimize working memory demands (Watson et al., 2006). On each trial, three cards were 

simultaneously presented on a computer screen, one at the top and two at the bottom (i.e. left and right). 

Each card consisted of a figure with a specific shape and colour. Children needed to indicate which of 

the two bottom cards matched the top card. The bottom cards were either identical to the top card in 

shape but different in colour or identical to the top car in colour but different in shape. On 2 successive 

items, the cards had different colours and different shapes. Children were given no explicit instructions 

about the sorting rules; these needed to be inferred based on the feedback that was given after every 

item. Without notice, the sorting rule changed after a variable number (seven, eight, or nine) of 

consecutive correct responses. After this switch item, children needed to disengage from the previous 

sorting rule and discover and/or apply the other sorting rule. The items were randomly divided into five 

runs, each consisting of five blocks. In each block, a particular sorting rule needed to be applied. A new 

block began after the sorting rule changed. In total, the sorting rule changed four times in each run; thus, 

it changed 20 times during the whole task. When a child failed to reach seven, eight, or nine consecutive 

correct responses within 50 trials, the task was discontinued. To familiarize the children with the task, 

one practice block was presented in which cards needed to be sorted by shape; after eight consecutive 

correct responses, this block was completed. Children needed to answer by pressing the corresponding 

response key (i.e. left/right key). The item remained visible until response. The performance measure 
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was the average number of items a child needed to switch between rules (i.e. total number of items 

needed to switch divided by number of blocks completed). 

Updating skills. Updating was assessed by means of a standard 2-back task (Pelegrina et al., 2015). 

In this continuous recognition task, a sequence of items is shown. For each item, participants needed to 

indicate whether the presented stimulus was identical to the stimulus presented 2 trials back by pressing 

a green or red key, thereby answering yes or no, respectively. Hence, children needed to store two 

elements in their memory and update these elements given that each time they needed to eliminate the 

previous item, add the new one, and maintain the presentation order of the items. Items were coloured 

images (e.g. rocket, sweater) presented one by one in the centre of a white screen. In total, 40 items, 

divided into two blocks consisting of 20 trials each, were presented. In each block, 30% of the trials 

were target trials (i.e. correct answer = yes). The first 3 trials of each block were always nontarget items. 

After fixation, the stimulus appeared for 3000 ms, followed by a black screen that remained visible for 

1000 ms. To familiarize the children with the task, one practice block (20 items) was presented. The 

performance measure was the accuracy of the answer. 

2.3 Metacognition 

Two aspects of metacognition, namely general metacognitive knowledge and task-specific 

metacognitive judgments incorporated into the arithmetic task, were included in this study to explore 

both domain-general and domain-specific aspects of metacognition. Both dimensions on which 

metacognitive judgments can vary, time of judgments (i.e. prediction vs. postdiction) and granularity of 

judgments (i.e. local judgments specific to one item vs. global holistic judgments across multiple items), 

were included (Pieschl, 2009). On the one hand, one local metacognitive question measuring calibration 

of confidence was asked after every arithmetic item in the second block of the arithmetic task. On the 

other hand, two global metacognitive questions were asked, one before the start of the arithmetic task 

and one after the entire task was finished. By selecting confidence judgments as our task-specific 

metacognitive measure and not asking participants to exhibit control actions (e.g. make modifications 

to or correct their answers), we focused on the monitoring aspect of metacognition rather than on its 

control mechanism (Nelson & Narens, 1990). 

General metacognitive knowledge. To measure metacognitive abilities independent of arithmetic, we 

used a general metacognitive questionnaire (Haberkorn et al., 2014). In this questionnaire, 15 situations 

involving mental performance (e.g. ‘‘Which strategy do you think is better to make sure you won’t 

forget to take your skates to school the next day?”) were described and three possible answers (e.g. 

‘‘Write a note on a piece of paper”, ‘‘Think strongly about the skates”, ‘‘Both proposed strategies are 

equally good/bad”) were presented. The researcher read the situations and the corresponding options 

aloud one by one. Children were given a response form with pictures of the three possible answers (see 
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Figure 2.2) so that they could follow each item and indicate their answer. The performance measure was 

the number of correct answers. 

 

Figure 2.2. Example of the response form of the general metacognitive knowledge questionnaire.  

 

Local on-task metacognitive monitoring. Calibration of confidence (i.e. the alignment between one’s 

confidence in solving a problem and the accuracy of the answer) was measured as in Rinne and 

Mazzocco (2014) by asking children on a trial-by-trial basis to report their confidence in the accuracy 

of their answer during the arithmetic tasks. These data were collected for every arithmetic item in the 

second block of both arithmetic tasks (n = 32 in each task). A specific protocol was used in the arithmetic 

tasks to foster retrieval and increase the likelihood of making errors and, thus, to maximize the variability 

in this metacognitive monitoring measure. After giving their answer to the arithmetic problem, children 

needed to indicate how confident they were that their answer was correct (i.e. ‘‘Correct,” ‘‘I am not 

sure,” or ‘‘Incorrect”). Calibration scores were the alignment between children’s confidence rating and 

the accuracy of their answer (i.e. correct arithmetic answers yielded a score of 2 if children said they 

were correct, 1 if they said they were not sure, or 0 if they said they were incorrect; this scale was 

reversed when the arithmetic answer was incorrect). The calibration score per child was the mean of all 

calibration scores (i.e. calibration score per item; n = 32) and was calculated for each arithmetic task 

separately. The higher the calibration scores, the better the on-task metacognitive monitoring skills. To 

familiarize the children with the task, 6 practice items were presented. We used emoticons in 

combination with the options (e.g. ‘‘” and ‘‘Correct”) to make the task more attractive and feasible 

for children. 

Global domain-specific metacognitive monitoring. Two global metacognitive questions were asked 

in both arithmetic tasks. Before each task started, children needed to report how they thought they would 

perform on the task (i.e. prospective question). After the task was finished, they needed to report how 

they thought they had performed on the task (i.e. retrospective question). During data analyses, we 

observed that the scoring of these items was problematic, and so we decided to remove these two 

questions (see supplementary material). 
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2.4 Numerical magnitude processing 

A numerical magnitude comparison task was used to assess children’s numerical magnitude 

processing skills. In view of the meta-analysis by Schneider et al. (2017), which showed that symbolic 

measures were stronger predictors of mathematical performance than nonsymbolic measures, we 

administered a symbolic version of the task using Arabic digits as stimuli. This task consisted of 

comparing two simultaneously presented numerical magnitudes (i.e. Arabic digits) on either side of the 

centre of the screen. Participants needed to select the numerically larger numerical magnitude by 

pressing the corresponding response key (i.e. left/right key). Stimuli comprised all combinations of 1–

9, yielding 72 trials. The trials were randomly divided into two blocks. After fixation, stimuli appeared 

until response. The position of the largest digit was balanced. To familiarize the children with the task 

requirements, 3 practice trials were presented. The performance measure was average RT of correct 

responses. 

2.5 Control variables 

Intellectual ability was assessed by means of the Raven’s Standard Progressive Matrices (Raven et 

al., 1992). Children were given 60 multiple-choice items in which they needed to complete a pattern. 

The performance measure was the number of correctly solved patterns.  

A motor speed task was included as a control for children’s response speed on the keyboard (De 

Smedt & Boets, 2010). Two shapes were simultaneously presented on either side of the screen, and 

children needed to indicate which of the two shapes was filled by pressing the corresponding key (i.e. 

left/right key). All shapes were similar in size, and each shape occurred four times filled and four times 

nonfilled, yielding 20 trials. The position of the filled shape was balanced. After fixation, stimuli 

appeared until response. To familiarize the children with the task, 3 practice trials were included. The 

performance measure was average RT of correct responses. 

3 Procedure 

All participants were tested at their own school during regular school hours. They all completed three 

sessions: an individual session including the arithmetic tasks; a session in small groups of 5 children 

including the motor speed task, the symbolic numerical magnitude processing task, and the executive 

functioning tasks; and a group-administered session including the metacognitive questionnaire and 

intellectual ability task. The sessions took about 40, 45, and 60 min, respectively. All children completed 

the tasks in the above-mentioned order. 
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4 Analyses 

We ran frequentist analyses using both univariate and multivariate techniques as well as Bayesian 

analyses. Frequentist analyses allowed us to explore our data by means of a well-known method to gauge 

statistical support for the hypotheses of interest. However, this p-value null hypothesis significance 

testing has a number of statistical limitations (Andraszewicz et al., 2015). For example, p-values cannot 

quantify evidence in favour of a null hypothesis, they only signal the extremeness of the data under the 

null hypothesis, and p-value logic resembles a proof by contradiction (i.e. low p-values indicate extreme 

data and usually lead researchers to reject the null hypothesis and interpret this as evidence in favour of 

the alternative hypothesis). Unlike null hypothesis testing, Bayesian statistics allow one to test the degree 

of support for a hypothesis (i.e. degree of strength of evidence in favour of or against any given 

hypothesis). This is expressed as the Bayes factor (BF), which is the ratio between the evidence in 

support of the alternative hypothesis over the null hypothesis (BF10). By comparing the fit of the data 

under the null hypothesis with the alternative hypothesis, Bayes factors quantify the evidence in favour 

of these hypotheses (see Andraszewicz et al., 2015). For example, a Bayes factor of 10 (BF10 = 10) 

suggests that the alternative hypothesis is 10 times more likely than the null hypothesis. Although Bayes 

factors provide a continuous measure of degree of evidence, there are some conventional approximate 

guidelines for interpretation (see Andraszewicz et al., 2015, for a classification scheme); BF10 = 1 

provides no evidence either way, whereas BF10 > 1 provides anecdotal evidence, BF10 > 3 provides 

moderate evidence, BF10 > 10 provides strong evidence, BF10 > 30 provides very strong evidence, and 

BF10 > 100 provides decisive evidence for the alternative hypothesis. By adding these Bayesian analyses, 

we deepened our findings from the traditional analyses because we were able to identify which 

hypothesis is most plausible (i.e. alternative hypothesis vs. null hypothesis) and which predictors are the 

strongest. 

 

Results 

1 Descriptive statistics 

The descriptive statistics of the primary measures are presented in Table 2.1. A table with descriptive 

statistics of all administered measures—including control variables and baseline conditions—can be 

found in Appendix A.  
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Table 2.1  

Descriptive statistics of the key variables 

 n M SD Range Reliability 

Arithmetic      

Addition       

Accuracy 127 .94 .07 [.66-1] .95 

Response time (ms) 127 3654.22 1445.67 
[1716.01-

8948.59] 
.80 

Multiplication      

Accuracy 127 .84 .12 [.36-1] .94 

Response time (ms) 127 7141.84 4134.53 
[2484.21-

31130.19] 
.87 

Executive functions      

Inhibition       

Flanker task – incongruent 

condition      

Accuracy 126 .91 .13 [.15-1] .79 

Response time (ms) 126 956.12 236.39 
[560.60-

1729.25] 
.90 

Inverse efficiency 

(RT/accuracy) a 126 1115.01 550.80 
[604.50-

5047.67] 
. 

Animal Stroop task – incongruent 

condition      

Accuracy 126 .91 .09 [.60-1] .58 

Response time (ms) 126 1000.10 167.46 
[619.25-

1393.40] 
.80 

Inverse efficiency 

(RT/accuracy)a 126 1106.09 196.96 
[709.26-

1732.23] 
. 

Shifting      

WCST (average # items needed to 

switch) b 123 7.03 5.01 [2-33] . 

Updating       

2-back task (accuracy) 127 .72 .09 [.15-.85] .62 

Metacognition      

General metacognitive knowledge 
     

General metacognitive 

questionnaire (# correct) c 
127 9.20 2.47 [3-15] .49 

Calibration of confidence d 
     

In addition task 127 1.85 .15 [1.31-2] .78 

In multiplication task 127 1.74 .18 [0.81-2] .74 

Numerical magnitude processing  
Symbolic numerical magnitude 

comparison task 

     

Response time (ms) 127 856.51 223.15 
[465.73-

2037.15] 
.92 

Note. a Inverse efficiency scores were calculated by dividing the response time by the accuracy; the 

higher the score, the worse the performance; b Score = total number of items needed to switch divided 

by number of blocks completed; c Number of correct answers; d Alignment between children’s 

confidence rating and the accuracy of their arithmetic answer, i.e. correct arithmetic answers yielded a 

score of 2 if children said they were Correct, 1 if they said I am not sure, and 0 if they said they were 

Incorrect; this scale was reversed when the arithmetic answer was incorrect. The higher the score, the 

better the calibration of confidence.  
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2 Preliminary analyses 

Before conducting the subsequent correlation and regression analyses, we conducted a series of 

preliminary analyses (e.g. strategy use, performance measures in the inhibition tasks) to rule out 

potential alternative explanations for the current results. These analyses are included in the 

supplementary material. None of these alternative explanations accounted for the findings that are 

reported below. 

3 Correlational analyses 

Pearson correlation coefficients were calculated to examine the associations between the different 

variables under study and addition performance (i.e. RT and accuracy [Table 2.2a]), and multiplication 

performance (i.e. RT and accuracy [Table 2.2b]). A full matrix of all intercorrelations is provided in 

Appendix B. For the Bayesian analyses, we used a default prior provided by the statistical program 

JASP (JASP, 2019). The default prior width was set to 1 for Pearson correlations. 

 

Table 2.2a  

Correlational analyses of the response time (RT) and accuracy of addition 

Variable Addition RT Addition accuracy 

 r p BF10 r p BF10 

Executive functions       

Inhibition – Flanker (IE) a,b -.156 .083 0.501 -.040 .659 0.123 

Inhibition – Stroop (IE) a, c .120 .183 0.270 -.188 .035 1.002 

Shifting a (average # items 

needed to switch)  
-.050 .585 0.131 .002 .987 0.113 

Updating (accuracy) d -.101 .259 0.208 .341 <.001 >100 

       

Metacognition       

General metacognitive 

knowledge (# correct) d 
-.243 .006 4.701 .114 .201 0.249 

Calibration of confidence – 

Addition d -.289 .001 23.385 .502 <.001 >100 

Symbolic numerical 

magnitude processing 

(RT)a, e 

.361 <.001 >100 .028 .757 0.116 

Note. a The higher the scores, the worse the performance; b Controlled for the Flanker task baseline 

condition (IE); c Controlled for the animal Stroop task baseline condition (IE); d The higher the score, 

the better the performance; e Controlled for performance on the motor speed task (RT). 
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Table 2.2b  

Correlational analyses of the response time (RT) and accuracy of multiplication  

Variable Multiplication RT Multiplication accuracy 

 r p BF10 r p BF10 

Executive functions       

Inhibition – Flanker (IE) a,b -.142 .114 0.386 .085 .349 0.173 

Inhibition – Stroop (IE) a, c .001 .981 0.111 -.081 .371 0.167 

Shifting a (average # items 

needed to switch)  
-.090 .324 0.182 -.060 .508 0.140 

Updating (accuracy) d .053 .556 0.132 .278 .002 15.478 

       

Metacognition       

General metacognitive 

knowledge (# correct) d -.147 .099 0.426 .077 .391 0.160 

Calibration of confidence – 

Addition d -.238 .007 4.058 .791 <.001 >100 

Symbolic numerical 

magnitude processing 

(RT)a, e 

.251 .005 6.086 .008 .929 0.111 

Note. a The higher the scores, the worse the performance; b Controlled for the Flanker task baseline 

condition (IE); c Controlled for the animal Stroop task baseline condition (IE); d The higher the score, 

the better the performance; e Controlled for performance on the motor speed task (RT). 

 

3.1 Executive functions 

Performance (IE) on the animal Stroop task was significantly correlated with addition accuracy, 

indicating that children with better inhibition skills performed more accurately on the addition task. The 

Bayes factor indicated only anecdotal evidence for this association. The n-back task (accuracy) 

correlated with both addition and multiplication accuracy, with Bayes factors indicating strong to 

decisive evidence. This correlation was driven by omission errors (and not commission errors) in the n-

back task. There were no other significant correlations with the remaining executive functioning 

variables. Moreover, the Bayes factors indicated evidence in favour of the null hypotheses for these 

remaining associations. 

3.2 Metacognition 

General metacognitive knowledge was significantly associated with addition RT, indicating that 

children with better global metacognitive knowledge performed faster on the addition task. The Bayes 

factor indicated moderate evidence in favour of this association. There was no evidence for the null 

hypothesis or for the alternative hypothesis for the association between multiplication RT and general 

metacognitive knowledge. The null hypotheses of no association was supported for the associations 

between general metacognitive knowledge and addition and multiplication accuracy. Calibration of 
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confidence was significantly correlated with addition and multiplication performance, indicating that 

children with better on-task metacognitive monitoring skills performed better (i.e. faster and more 

accurately) on the arithmetic tasks. Bayes factors indicated moderate to decisive evidence for these 

associations.  

3.3 Symbolic numerical magnitude processing 

Addition and multiplication RT were significantly related to symbolic numerical magnitude 

processing; children with better symbolic numerical magnitude processing skills performed faster when 

doing arithmetic. Bayes factors indicated moderate to decisive evidence. The null hypotheses were 

supported for the associations between addition and multiplication accuracy and symbolic numerical 

magnitude processing RT. 

4 Regression analyses 

Regression analyses were performed to assess the unique contribution of our different cognitive 

variables to arithmetic performance. Therefore, all variables that were significantly related to addition 

and/or multiplication were entered simultaneously into the regression model. To quantify the evidence 

in favour of our hypotheses, we calculated Bayes factors for each predictor and identified the best model 

to predict each dependent variable in JASP (JASP, 2019). Specifically, a BFinclusion was calculated for 

every predictor in the model, which represents the change from prior to posterior odds (i.e. BF10), where 

the odds concern all the models with a predictor of interest to all models without that predictor (i.e. a 

Bayes factor for including a predictor averaged across the models under consideration). We used a 

default prior width provided by JASP of .354 (prior for r scale covariates) for the linear regression 

analyses. Table 2.3 presents the results of our regression analyses. 

 

Table 2.3a  

Regression analysis of addition RT (R² = .225) 

Variable β t p ΔR² BFinclusion 

Control variables      

Motor speed task (RT) a -.114 -1.321 .189 .024 0.474 

Intelligence (# correct) b .020 0.247 .806 0 0.254 

      

Primary variables      

General metacognitive 

knowledge (# correct) b -.178 -2.143 .034 .028 1.493 

Calibration of confidence – 

Addition b -.291 -3.651 <.001 .082 76.675 

Symbolic numerical 

magnitude processing (RT) a .356 4.080 <.001 .103 >100 

Note. a The higher the score, the worse the performance; b The higher the score, the better the performance. 
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Table 2.3b   

Regression analysis of addition accuracy (R² = .338) 

Variable β t p ΔR² BFinclusion 

Control variables      

Stroop task Baseline (IE) a .023 0.250 .803 0 0.224 

Intelligence (# correct) b .176 2.237 .027 .028 3.885 

      

Primary variables      

Inhibition – Stroop task (IE) a -.071 -0.731 .466 .003 0.300 

Updating (accuracy) b .202 2.576 .011 .037 4.673 

Calibration of confidence – 

Addition b .414 5.238 <.001 .151 >100 

Note. a The higher the scores, the worse the performance; b The higher the score, the better the performance. 

 

Table 2.3c   

Regression analysis of multiplication RT (R² = .186) 

Variable β t p ΔR² BFinclusion 

Control variables      

Motor speed task (RT) a -.079 -0.860 .392 .005 0.36 

Intelligence (# correct) b .223 2.635 .010 .047 4.84 

      

Primary variables      

General metacognitive 

knowledge (# correct) b -.118 -1.358 .177 .012 0.63 

Calibration of confidence – 

Multiplication b -.271 -3.202 .002 .069 16.74 

Symbolic numerical 

magnitude processing (RT) a .232 2.540 .012 .044 6.69 

Note. a The higher the score, the worse the performance; b The higher the score, the better the performance. 

 

Table 2.3d  

Regression analysis of multiplication accuracy (R² = .661) 

Variable β t p ΔR² BFinclusion 

Control variables      

Stroop task Baseline (IE) a .006 0.086 .932 0 0.279 

Intelligence (# correct) b .119 2.115 .036 .013 1.539 

      

Primary variables      

Inhibition – Stroop task (IE) a .024 0.353 .725 .001 0.260 

Updating (accuracy) b .131 2.376 .019 .016 1.572 

Calibration of confidence – 

Multiplication b .759 13.906 <.001 .547 >100 

Note. a The higher the scores, the worse the performance; b The higher the score, the better the performance. 
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4.1 Addition 

Addition RT was significantly predicted by general metacognitive knowledge, calibration of 

confidence, and symbolic numerical magnitude processing (RT). Bayes factors indicated very strong to 

decisive evidence for the latter two variables, whereas the Bayes factor for general metacognitive 

knowledge indicated only anecdotal support for the alternative hypothesis. The strongest model to 

predict addition RT was the model including general metacognitive knowledge, calibration of 

confidence, and symbolic numerical magnitude processing (BF10 = 85387.75). The R² of the overall 

model was medium. 

Addition accuracy was significantly predicted by the 2-back task (accuracy), calibration of 

confidence, and intelligence, and the evidence for the contribution of these predictors was moderate to 

decisive. There was moderate evidence for the null hypothesis concerning the influence of the animal 

Stroop task (IE). The strongest model to predict addition accuracy was the model including intelligence, 

updating, and calibration of confidence (BF10 = 1.270e+8). The R² of the overall model was large. 

4.2 Multiplication 

Multiplication RT was significantly predicted by calibration of confidence, symbolic numerical 

magnitude processing (RT), and intelligence. Bayes factors indicated moderate to strong evidence for 

these predictors. General metacognitive knowledge did not predict multiplication RT. The strongest 

model to predict multiplication RT was the model including intelligence, calibration of confidence, and 

symbolic numerical magnitude processing (BF10 = 464.81). The R² of the overall model was medium. 

Multiplication accuracy was significantly predicted by the 2-back task (accuracy), calibration of 

confidence, and intelligence. Only for calibration of confidence did the Bayes factors indicate decisive 

evidence. The evidence for the contribution of the 2-back task accuracy and intelligence was only 

anecdotal. The null hypothesis was supported for no influence of the animal Stroop task (IE) in 

multiplication accuracy. The strongest model to predict multiplication accuracy was the model including 

updating and calibration of confidence (BF10 = 2.102e+25). The R² of the overall model was large. 

 

Discussion 

 Why are some children so good in math and do others struggle their entire lives with basic math 

competencies? A large body of literature has already identified different cognitive factors that play an 

important role in mathematical development (e.g. Berch et al., 2016; Dowker, 2005; Duncan et al., 

2007). These factors can be subdivided into two groups, namely domain-general cognitive factors and 

domain-specific cognitive factors (e.g. Geary & Moore, 2016). Existing research has largely focused on 

one domain-specific cognitive factor, numerical magnitude processing (Schneider et al., 2017), 
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neglecting other critical domain-general cognitive factors that might play a role in (a)typical 

mathematical development. The current study included two domain-general factors, executive functions 

and metacognition, to identify their unique contribution in arithmetic in addition to each other as well as 

in addition to symbolic numerical magnitude processing as an important domain-specific factor. This 

study closes an important gap in the literature by focusing on executive functioning in a comprehensive 

way (i.e. including inhibition, shifting, and updating) while also investigating the role of metacognition. 

By combining these two factors, this study sheds new and important light on how these different 

variables cooperate in arithmetic. In addition, to thoroughly investigate the role of executive functioning, 

the current study took into account different degrees of experience with arithmetic, high (addition) 

versus low (multiplication), because the level of experience might moderate the association between the 

cognitive factors with arithmetic (e.g. Laski & Dulaney, 2015). On the other hand, we included both 

general metacognitive knowledge and on-task metacognitive monitoring to investigate the extent to 

which domain-general and domain-specific measures of metacognition were related to arithmetic. 

Metacognition, and specifically on-task metacognitive judgments, was found to be a strong, stable, 

and unique predictor of both addition and multiplication. In line with Rinne and Mazzocco (2014), we 

found that local metacognitive judgments were strongly related with concurrent mental arithmetic. By 

uncovering its unique role in arithmetic above executive functions and symbolic numerical magnitude 

processing, and by testing this association in early primary school children, we extended Rinne and 

Mazzocco's (2014) findings in an important way. The current cross-sectional data do not allow us to 

derive strong conclusions about the direction of the association between metacognition and arithmetic. 

It might be that better performance on arithmetic has a positive influence on metacognitive skills and 

that more experience with correct arithmetic answers (i.e. due to better arithmetic skills) makes detecting 

incorrect answers easier, which leads to better later metacognitive performance. This hypothesis is in 

line with the results of Roebers and Spiess (2017), who found that earlier domain-specific skills in a 

first-order task (i.e. spelling) predicted later metacognitive monitoring abilities. On the other hand, it 

might be that better detection of errors (i.e. due to better metacognitive skills) creates more learning 

moments in which incorrect arithmetic answers are detected and new, potentially correct arithmetic 

answers are learned, which in turn leads to better later arithmetic performance. This hypothesis is in line 

with the results of Rinne and Mazzocco (2014), who found that better calibration predicted later gains 

in mental arithmetic. Lastly, the relationship between metacognition and arithmetic performance might 

also be reciprocal, whereby arithmetic performance and metacognition both influence each other. Future 

longitudinal studies are needed to investigate this. 

In contrast to the associations between on-task metacognitive skills and arithmetic which were unique 

and strong, general metacognitive knowledge was significantly correlated with addition RT, but once 

symbolic numerical magnitude processing RT was considered, there was no clear evidence for an effect 

of this factor. This might suggest that children’s metacognition is more domain specific, which is in line 
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with observations by Vo et al. (2014) and Neuenhaus et al. (2011). Importantly, the general 

metacognitive questionnaire differed in two considerable ways from the local, on-task metacognitive 

monitoring measure. Compared with the general metacognitive questionnaire, on-task metacognitive 

monitoring was measured online and in more detail (i.e. on a trial-by-trial basis). This could limit the 

interpretation of specificity of metacognition based on our results. The obtained results might be specific 

to the age of our participants given that it is theoretically assumed that the development of metacognitive 

knowledge and skills begins highly domain and situation specific and becomes more flexible and domain 

general with practice and experience (Borkowski et al., 2000). 

This study also investigated different components of executive functioning, namely inhibition, 

shifting, and updating. Based on the lack of significant correlations between our executive functioning 

measures (see Appendix B), our results confirm that inhibition, shifting, and updating are separate 

aspects of executive functioning. This result is in line with existing research (e.g. Bull & Scerif, 2001; 

Cragg & Gilmore, 2014; Lee et al., 2013; Miyake et al., 2000; van der Sluis et al., 2007) and indicates 

that in the operationalisation of executive functions, it is essential to differentiate between different 

components. 

In line with previous research (e.g. Bull & Scerif, 2001; Cragg & Gilmore, 2014; Peng et al., 2016), 

we found that updating accuracy was a stable and unique predictor of both addition and multiplication 

accuracy. Updating skills may be required to recall arithmetic facts from long-term memory, in line with 

evidence suggesting that individuals with low updating skills are less likely to retrieve answers to simple 

arithmetic problems (e.g. Barrouillet & Lépine, 2005; Geary et al., 2012). On the other hand, arithmetic 

accuracy may rely on updating skills in order to represent the arithmetic item and to store interim 

solutions while using procedural strategies in multistep problems. 

Whereas our frequentist analyses pointed to a significant—yet weak—association between addition 

accuracy and inhibition, the Bayes factor indicated that the hypothesis of an association can be neither 

confirmed nor rejected. Consequently, based on the results of the current study, no firm conclusions can 

be drawn on the association between inhibition and addition accuracy. On the other hand, the Bayes 

factors of the association between inhibition and multiplication indicate that there is evidence in favour 

of no association. Based on the current results, there is not much support for a time-limited role of 

inhibition in arithmetic performance, as we originally predicted. Future research is needed to further 

investigate the association between inhibition and arithmetic. 

We did not observe an association between shifting and arithmetic. Moreover, Bayes factors 

indicated moderate evidence in favour of no association between these variables. This result is in line 

with previous research (e.g. Bull & Lee, 2014; van der Sluis et al., 2007; Van der Ven et al., 2012; 

Yeniad et al., 2013) but differs from other existing literature (e.g. Bull et al., 1999). This difference 

could be due to the difference in the operationalisation of mathematics given that different mathematical 
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abilities all could be differently related to certain cognitive factors. On the other hand, the need for 

shifting (e.g. between strategies) was limited in our single-digit arithmetic task because of the curricular 

focus on retrieval of single-digit arithmetic (De Smedt, 2016) and the homogeneity of the arithmetic 

tasks (i.e. addition and multiplication items were presented in separate tasks, requiring no shifts between 

operations in a task). The impact of shifting skills on arithmetic might become more clear when different 

math components are considered together. The absence of a significant correlation of shifting skills with 

arithmetic in this study does not indicate their lack of influence in arithmetic, yet it suggests that 

individual differences in shifting skills are not a strong explanation for individual differences in single-

digit arithmetic. 

Whereas both executive functions and on-task metacognitive monitoring contributed to arithmetic 

performance, on-task metacognitive monitoring proved to be more important. This could be due to the 

fact that the sensitivity of the executive function tasks to capture individual differences was lower 

because these tasks have low between-participant variability and, hence, their usefulness in studying 

individual differences might be limited (Hedge et al., 2017). 

In line with a large body of research (see Schneider et al., 2017, for a meta-analysis), the current 

findings support the unique role of symbolic numerical magnitude processing in arithmetic. The current 

data clearly indicate that such associations do not merely arise as a result of a common reliance on 

executive functions (e.g. Gilmore et al., 2013). 

The results of this study revealed that there is overlap in the cognitive processes that are associated 

with addition and multiplication performance (e.g. updating skills accuracy, on-task metacognitive 

monitoring, symbolic numerical magnitude processing RT) but that the strength of the association 

differed across the two operations. This indicates that subtle differences (e.g. level of experience) within 

one mathematical skill (i.e. arithmetic) could account for different associations with other cognitive 

variables. It is important to note that the difference between addition and multiplication is not purely 

one of experience and that there could also be differences in task demands. On the other hand, the kind 

of instruction the children received in the Belgian school system, namely the curriculum’s strong 

emphasis on automatization of arithmetic facts for both operations (Onderwijsdoelen Vlaanderen, 

2018), makes these task demands rather similar. 

Future research should examine these associations investigated in the current study longitudinally to 

examine the directions of the associations and how such associations evolve over time. Supplementary 

reaction time-based analyses (see supplementary material) indicated that different strategies were used 

to solve the arithmetic items and that indices reflective of retrieval and procedure use both were 

correlated with on-task metacognitive judgments and symbolic magnitude processing. However, these 

metrics might mask important individual differences in strategy use, and future research should 

investigate strategy use at a trial-by-trial level, for example, by collecting verbal report data.  
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Conclusion 

To conclude, the results of this study show that updating, metacognition, and numerical magnitude 

processing all are significant predictors of arithmetic performance even in addition to each other. 

Importantly, these results emphasize the importance of including metacognition in cognitive research. 

Metacognition has received a lot of attention in more general educational research yet is mostly ignored 

in developmental research in the field of mathematics. Importantly, this study reveals that noticing one’s 

own errors (i.e. task-specific metacognitive monitoring) is an important unique predictor of arithmetic 

performance. Knowing about one’s own tendency to commit easy errors may lead to increased self-

regulatory activities (Schneider, 2010) and to improvements in (arithmetic) performances over time 

(Rinne & Mazzocco, 2014). Hence, these individual differences in noticing one’s own errors might help 

one to learn from his or her mistakes. 
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Appendixes 

1 Appendix A – Descriptive statistics of all the administered measures 

Table 2.A1  

Descriptive statistics of all the administered measures 

 n M SD Range 

Arithmetic     

Addition      

Accuracy 127 .94 .07 [.66-1] 

Response time (ms) 127 3654.22 1445.67 [1716.01-8948.59] 

Multiplication     

Accuracy 127 .84 .12 [.36-1] 

Response time (ms) 127 7141.84 4134.53 
[2484.21-

31130.19] 

Executive functions     

Inhibition      

Flanker – incongruent condition     

Accuracy 126 .13 .91 [.15-1] 

Response time (ms) 126 956.12 236.39 [560.60-1729.25] 

Inverse efficiency a 126 1115.01 550.80 [604.50-5047.67] 

Flanker – baseline condition     

Accuracy 126 .94 .08 [.60-1] 

Response time (ms) 126 647.82 87.39 [453.00-887.78] 

Inverse efficiency a 126 689.36 101.26 [479.80-986.42] 

Animal Stroop – incongruent condition     

Accuracy 126 .91 .09 [.60-1] 

Response time (ms) 126 1000.10 167.46 [619.25-1393.40] 

Inverse efficiency a 126 1106.09 196.96 [709.26-1732.23] 

Animal Stroop – baseline condition     

Accuracy 126 .97 .05 [.70-1] 

Response time (ms) 126 867.47 155.13 [508.05-1297.38] 

Inverse efficiency a 126 895.11 182.83 [508.05-1651.02] 

Shifting     

WCST (average # items needed to switch) b 123 7.03 5.01 [2-33] 

Updating     

2-back task (accuracy) 127 .72 .09 [.15-.85] 

Metacognition     

General metacognitive knowledge      

General metacognitive questionnaire (# correct) c 127 9.20 2.47 [3-15] 

Calibration of confidence d     

In addition task 127 1.85 .15 [1.31-2] 

In multiplication task 127 1.74 .18 [0.81-2] 

Numerical magnitude processing      

Symbolic numerical magnitude comparison task     

Response time (ms) 127 856.51 223.15 [465.73-2037.15] 

Control variables     

Intelligence (# correct) c 127 34.50 8.35 [10-50] 

Motor speed task (RT) 126 593.86 153.92 [339.75-1151.56] 

Note. a Calculated by dividing the RT by the accuracy; the higher the scores, the worse the performance; b 

Score = total number of items needed to switch divided by number of blocks completed; c Number of correct 

answers; d Alignment between children’s confidence rating and the accuracy of their arithmetic answer, i.e. 

correct arithmetic answers yielded a score of 2 if children said they were Correct, 1 if they said I am not sure, 

and 0 if they said they were Incorrect; this scale was reversed when the arithmetic answer was incorrect. The 

higher the scores, the better the calibration of confidence.  
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2 Appendix B – Correlational analyses between the administered measures 

Table 2.B1  

Correlational analyses between the administered measures 
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Note. ACC = accuracy; All correlations with the Flanker task incongruent condition are controlled for the 

performance (IE) on the Flanker baseline condition; All correlations with the animal Stroop task incongruent 

condition are controlled for the performance (IE) on the animal Stroop baseline task; All correlations with the 

numerical magnitude processing task are controlled for performance (RT) on the motor speed task, except for the 

correlations with the inhibition tasks, which are controlled for their respective baseline (IE).  
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Supplementary materials 

1 Global metacognitive questions 

Two global metacognitive questions were asked in both arithmetic tasks. Before the task started, 

children had to report how they thought they would perform on the task (i.e. prospective question). After 

the task was finished, they had to report how they thought they had performed on the task (i.e. 

retrospective question). We used emoticons corresponding with the possible answers (e.g.  

corresponded with “Good”) to make the task more attractive and feasible for children.  

Our rationale for the scoring of this task was the same as for the local, on-task metacognitive 

monitoring, namely giving the best score (i.e. 2) to correct extreme judgements (i.e. “Good” or “Not 

good”), the lowest score (i.e. 0) to incorrect extreme judgements, and an average score (i.e. 1) when the 

child did not make an extreme judgement. However, to define the correctness of the judgement, an 

indicator of actual performance has to be taken into account. In preparatory analyses, we tried to find 

such an indicator (1) by comparing children’s performance to the performance of all participants (i.e. 

their percentile score), and (2) by comparing their performance to certain standards (i.e. accuracy of 1-

.71 = Good; .70-.51 = Average; .50-0 = Not good). The children, however, were not aware of these 

indicators, and therefore they were not able to effectively rate their performance. It could be that they 

were thinking about “What does my teacher thinks good performance is?” or “What do I think the 

experimenter thinks about my performance?”, or that they compared to some internal reference point 

(e.g. their typical performance on similar tasks). On the other hand, the use of one single item to measure 

a variable is not reliable.  

Against this background, we decided to remove these two questions (i.e. prediction and postdiction) 

from further analyses. 

 

2 Preliminary analyses 

We report the outcome of four preliminary analyses that were run to rule out potential alternative 

explanations for the current results that are discussed in our manuscript.  

 

2.1 Blocks in the arithmetic tasks 

The results of arithmetic were based on the data of both blocks of each task, i.e. one without and one 

with metacognitive monitoring question. It could be that asking a metacognitive question after solving 

arithmetic items, had an influence on arithmetic performance. We therefore also analysed our data based 

only on the arithmetic block that did not include metacognitive questions. The interpretation of the 

results was identical to when the results were based on both blocks together. Consequently, the results 
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presented in the manuscript are based on the full dataset (i.e. block with and without metacognitive 

monitoring questions).  

2.2 Strategy use within the arithmetic tasks 

The RTs of the arithmetic tasks indicated that it is likely that different strategies were used to solve 

the arithmetic items. We used different methods to estimate strategy use (i.e. procedural strategies vs. 

arithmetic fact retrieval). We calculated a Tau estimate which reflects the positive skew of the 

distribution of response times of a participant, with increases in Tau reflecting a slowing on some trials 

(Penner-Wilger & Lefevre, 2006). As a result, Tau can be used as an index of procedure use. On the 

other hand, we used the data of the small arithmetic items (i.e. items with an answer smaller or equal to 

10 for the addition items, and items with an answer smaller or equal to 25 for the multiplication items) 

as an index of retrieval. This problem-size approach to investigate strategy use has been widely used in 

the literature (De Smedt, 2016) and the assumption that retrieval strategies are typically used more often 

to solve small problems has been confirmed by empirical data in children (e.g. Barrouillet, Mignon, & 

Thevenot, 2008; Imbo & Vandierendonck, 2008). We calculated average RTs of the small items and a 

Tau estimate for every participant, and correlated these two with the other key variables in our study 

(see Table 2.S1 and Table 2.S2 below). Importantly, as they are based on RT, these estimates of strategy 

use do not provide information about the associations between our key variables and arithmetic 

accuracy. 

Table 2.S1   

Correlational analyses of the response time (RT) of the small items as an index of retrieval and the Tau 

estimate as an index of procedural use in the addition task 

Variable Small Tau 

 r p BF10 r p BF10 

Executive functions       

Inhibition: Flanker (IE) a, b -.051 .571 0.131 -.092 .310 0.187 

Inhibition: Stroop (IE) a, c 

.105 .243 0.219 .189 .035 1.026 

Shifting (average # items 

needed to switch) d -.006 .945 0.115 -.074 .423 0.157 

Updating (accuracy) -.120 .179 0.271 -.111 .215 0.238 

       

Metacognition       

General metacognitive 

knowledge (# correct) e -.218 .014 2.132 -.202 .023 1.393 

Calibration of confidence – 

Addition e -.228 .011 2.769 -.216 .016 1.978 

Symbolic numerical 

magnitude processing (RT)f .379 <.001 >100 .258 .005 5.854 

Note. a IE = inverse efficiency of the incongruent condition, calculated by dividing the response time by the 

accuracy; the higher the score, the worse the performance b; Controlled for the Flanker task baseline condition 

(IE); c Controlled for the animal Stroop task baseline condition (IE); d The higher the score, the worse the 

performance; e The higher the score, the better the performance; f Controlled for performance on the motor speed 

task (RT). 



M o r e  t h a n  n u m b e r  s e n s e  | 65 

 

 

 

2 

 

Table 2.S2  

Correlational analyses of the response time (RT) of the small items as an index of retrieval and the Tau 

estimate as an index of procedural use in the multiplication task 

Variable Small Tau 

 r p BF10 r p BF10 

Executive functions       

Inhibition: Flanker (IE) a, b -.078 .386 0.162 -.086 .340 0.338 

Inhibition: Stroop (IE) a, c 
.041 .648 0.123 .069 .443 0.149 

Shifting (average # items 

needed to switch) d 
-.014 .879 0.116 -.052 .576 0.134 

Updating (accuracy) -.056 .530 0.135 -.013 .886 0.112 

       

Metacognition       

General metacognitive 

knowledge (# correct) e 
-.140 .117 0.371 -.137 .125 0.352 

Calibration of confidence – 

Multiplication e 
-.513 <.001 >100 -.434 <.001 >100 

Symbolic numerical 

magnitude processing (RT)f 
.288 .002 16.069 .360 <.001 >100 

Note. a IE = inverse efficiency of the incongruent condition, calculated by dividing the response time by the 

accuracy; the higher the score, the worse the performance b; Controlled for the Flanker task baseline condition 

(IE); c Controlled for the animal Stroop task baseline condition (IE); d The higher the score, the worse the 

performance; e The higher the score, the better the performance; f Controlled for performance on the motor speed 

task (RT). 

 

As can be seen in tables 2.S1 and 2.S2, the pattern of results is largely the same for both strategy 

indicators in both operations. Consequently, based on these estimates, we conclude that our results were 

not likely to be confounded by strategy use and, therefore, no distinction in strategy use was made in 

the results presented in the manuscript. However, the analyses using these estimates should be 

interpreted with caution, as they do not consider strategy use on a trial-by-trial basis (Siegler, 1987) and 

children could be using other strategies than assumed based on the assumptions made to calculate these 

estimates. Future studies should therefore measure the strategy that participants use to solve each 

problem via trial-by-trial strategy reports.  
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2.3 Task-specific metacognitive monitoring 

The score of task-specific metacognitive monitoring included accuracy, but accuracy was very high 

in the arithmetic tasks. As children tend to be overconfident (Destan & Roebers, 2015) - indeed also in 

this study children often indicated that they thought they were right, which in most cases (i.e. combined 

with accurate arithmetic answers) resulted in the highest metacognitive monitoring score - our results 

might be biased. We therefore also analysed the metacognitive monitoring data based on the items with 

incorrect arithmetic answers only. The interpretation of the results did not change when only the 

incorrectly solved arithmetic items were considered. Therefore, all results in the paper are based on the 

full dataset.  

2.4 Inhibition tasks 

In the inhibition tasks, i.e. Flanker task and animal Stroop task, there were different conditions, 

namely a baseline or neutral condition (i.e. Flanker: only one arrow was presented in the centre of the 

screen; Stroop: animals occupied the same area on the screen), a congruent condition (i.e. Flanker: 

distracter arrows pointed in the same direction as the target; Stroop: larger animal in real life = larger 

image on the screen) and an incongruent condition (i.e. Flanker: distracter arrows pointed in the opposite 

direction as the target; Stroop: larger animal in real life = smaller image on the screen). Descriptive 

statistics for the different conditions are presented in Table 2.S3 below. To check if the task manipulation 

in the inhibition tasks worked, we verified if the performance (IE) on the incongruent condition differed 

from the performance (IE) on the baseline condition. This was the case for both the Flanker task (t(125) 

= -9.03, p < .001) and the animal Stroop task (t(125) = 13.54, p < .001). There was no facilitation-effect 

(i.e. better performance in the congruent condition than the baseline condition) in neither the Flanker 

task nor the animal Stroop task. Performance was even significantly poorer in the congruent condition 

in both the Flanker task (t(125) = -9.772, p < .001) and the animal Stroop task (t(125) = -3.338, p < .001) 

compared to the baseline condition. Adding another dimension to the task (i.e. different picture sizes) 

clearly made the task more difficult in both the congruent and incongruent conditions. This might be 

due to inhibitory demands in both conditions and therefore, we did not use the difference score (i.e. 

incongruent condition minus congruent condition) as index for inhibition. For all analyses presented in 

the manuscript, we used the IE scores of the incongruent condition controlled for the IE score of their 

respective baseline condition via residuals using partial correlation. 
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Table 2.S3  

Descriptive statistics of the different conditions (i.e. neutral, congruent and incongruent) in the 

inhibition tasks 

 n M SD Range 

Flanker task     

Baseline task     

Neutral condition (IE) a,b 216 689.36 101.26 [479.80-986.42] 

Inhibitory task      

Congruent condition (IE) a,c 126 840.16 200.15 [493-1730.53] 

Incongruent condition (IE) a,d 126 1115.01 550.80 [604.50-5047.67] 

Animal Stroop task     

Baseline task      

Neutral condition (IE) a,e 126 895.11 185.83 [508.05-1651.02] 

Inhibitory task      

Congruent condition (IE) a,f 126 942.49 208.66 [560.53-1790.44] 

Incongruent condition (IE) a,g 126 1106.09 196.96 [709-1732.23] 
Note. a IE = inverse efficiency, calculated by dividing the response time by the accuracy; the higher the scores, 

the worse the performance; b One arrow in the middle of the screen; c Distractor arrows in the same direction as 

the target; d Distractor arrows in the opposite direction as the target; e Both animals occupied the same area on 

the screen; f Larger animal in real life = larger image on the screen; g Larger animal in real life = smaller image 

on the screen. 
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Chapter 3 

What does arithmetic count on?  

A longitudinal panel study on the roles of 

numerical magnitude processing, executive functions 

and metacognition in primary school. 

 

Abstract 

While there is a wealth of studies on the associations between arithmetic and individual 

(meta)cognitive functions such as numerical magnitude processing, executive functions and 

metacognition, far fewer studies investigate these diverse functions simultaneously to explore their 

unique roles in arithmetic. Such research is needed, because these three functions have been shown to 

be interrelated. Even fewer studies have examined these associations with arithmetic longitudinally, 

thereby hardly accounting for prior arithmetic performance in their design. The current study used a 

longitudinal panel design to simultaneously investigate the roles of numerical magnitude processing, 

executive functions and metacognition in arithmetic performance and development during an important 

developmental period in which all these functions develop (7-9 years-olds). Participants were 121 

typically developing children, who were tested on the abovementioned functions and arithmetic in 

second and third grade of primary school. Our results demonstrate that symbolic numerical magnitude 

processing and metacognition have unique predictive roles for later arithmetic. The data indicate that 

executive functions are not so strong predictors of arithmetic, when different other important 

(meta)cognitive functions are considered. Prior arithmetic performance remains to be the most robust 

predictor for later arithmetic performance. The results of this study emphasize the need to investigate 

(meta)cognitive correlates of arithmetic simultaneously and with a longitudinal panel design to obtain a 

more thorough understanding of functions playing a role in individual differences in arithmetic 

performance and development. 
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Introduction 

 Decades of research on the correlates of mathematics development in children has led to the 

identification of several important (cognitive) functions that are involved in mathematics performance 

and its development. Important examples of these functions are numerical magnitude processing (e.g. 

De Smedt, Noël, Gilmore, & Ansari, 2013, for a review; Schneider et al., 2017, for a meta-analysis), 

executive functioning (e.g. Bull & Lee, 2014; Cragg & Gilmore, 2014; Friso-Van Den Bos, Van Der 

Ven, Kroesbergen, & Van Luit, 2013) and metacognition (e.g. Garofalo & Lester, 1985; Lucangeli & 

Cornoldi, 1997; Rinne & Mazzocco, 2014; Schneider & Artelt, 2010; Schoenfeld, 1987; van der Stel, 

Veenman, Deelen, & Haenen, 2010). 

Firstly, numerical magnitude processing, defined as children’s elementary intuitions about quantity 

and the ability to understand the meaning of numbers, has been reliably identified as correlating with 

and predictive of individual differences in mathematics performance and development (e.g. De Smedt 

et al., 2013; Schneider et al., 2017). These findings indicate that the better individuals’ numerical 

magnitude processing skills are, the better their (concurrent) mathematical performance is. This was 

especially true for symbolic numerical magnitude processing compared to non-symbolic numerical 

magnitude processing (Schneider et al., 2017). The relations between the processing of non-symbolic 

and symbolic number and their development, constitute one of the most debated topics in numerical 

cognition, yet the existing body of evidence converge to the conclusion that symbolic abilities are the 

most critical for the development of mathematics (e.g., Merkley & Ansari, 2016). In (early) primary 

school, numerical magnitude processing skills substantially develop as children become faster and more 

accurate at numerical magnitude processing tasks, especially symbolic tasks (e.g. Matejko & Ansari, 

2016; Nosworthy, Bugden, Archibald, Evans, & Ansari, 2013).  

Secondly, executive functions refer to top-down mental processes that allow us to respond flexibly 

to our environment and engage in deliberate, goal-directed, thought and action (Cragg & Gilmore, 2014). 

In accordance with Miyake et al. (2000), executive functioning is typically operationalised as consisting 

of the processes of inhibition, shifting and updating. Inhibition refers to one’s ability to control one’s 

attention, behaviour, and thoughts to override a strong internal predisposition or external lure and instead 

do what is more appropriate or necessary (Diamond, 2013). Shifting is defined as the disengagement 

from an irrelevant task set or strategy, and the subsequent initiation of a new, more appropriate set (van 

der Sluis, de Jong, & van der Leij, 2007). Updating involves holding information in memory and flexibly 

manipulating it (Baddeley & Hitch, 1994). As there is both unity and diversity in these executive 

functions (Miyake et al., 2000), and as different components of executive functions are differently 

related to mathematics (Bull & Lee, 2014), it is of utmost importance to include all three aspects of 

executive functioning when examining their role in other processes such as mathematics. Executive 

functions in general, and updating in particular, are found to be correlated with and predictive of 
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mathematical performance and development (e.g. Bull & Lee, 2014; Cragg & Gilmore, 2014; Friso-Van 

Den Bos et al., 2013), indicating better executive functioning skills are associated with better 

mathematics skills. Examples of possible underlying mechanisms driving these associations are the 

importance of storage and retrieval of partial results during problem-solving processes or the 

suppression of inappropriate strategies or interfering information (e.g. Bull & Lee, 2014). From very 

early in life onwards, and throughout primary school, major advances in executive functioning occur 

(e.g. Carlson, Zelazo, & Faja, 2013; Diamond, 2013; Huizinga, Dolan, & van der Molen, 2006), 

providing children with better inhibition, shifting and updating skills. 

Thirdly, metacognition, which was first introduced by Flavell (1979), is often broadly defined as 

‘thinking about your thinking’. It encompasses both knowledge about your cognition (e.g. Brown, 1978; 

Flavell, 1979) and how people monitor and control their cognition on-task (e.g. Nelson & Narens, 1990). 

The relation between metacognition and mathematics has been extensively studied (e.g. Rinne & 

Mazzocco, 2014; Schoenfeld, 1992; Stillman & Mevarech, 2010; van der Stel et al., 2010) and there is 

a long tradition of research investigating metacognition in mathematics education (e.g. De Corte, 

Verschaffel, & Op ’t Eynde, 2000; Schneider & Artelt, 2010). These studies show that successful 

mathematics performance depends not only on having adequate knowledge, but also on having sufficient 

awareness, monitoring and control of that knowledge (e.g. Garofalo & Lester, 1985). Metacognitive 

knowledge and skills develop substantially in primary school (e.g. Lyons & Ghetti, 2010; Roebers & 

Spiess, 2017; Schneider, 2008, 2010), resulting in better general metacognitive knowledge (e.g. 

Schneider & Löffler, 2016) and improved monitoring and control skills (e.g. Garrett, Mazzocco, & 

Baker, 2006; Schneider & Lockl, 2008). Over its extended course of development in which 

metacognition becomes increasingly under the individual’s conscious control, metacognition becomes 

more explicit, powerful and effective. 

The role of these functions in mathematical performance has shown to vary depending on the 

mathematical domain under investigation, for example, for the roles of numerical magnitude processing 

(Schneider et al., 2017) and working memory (Peng et al. 2016). Consequently, when studying these 

functions, they should be investigated in relation to subcomponents of mathematics performance rather 

than to general mathematics achievement tests, which include diverse mathematical domains. Therefore, 

the current study specifically focusses on arithmetic.  

Because a multitude of (meta)cognitive functions have an impact on arithmetic performance 

(Dowker, 2019c), such as numerical magnitude processing, executive functions and metacognition, it is 

essential to investigate such functions simultaneously. The majority of the abovementioned studies on 

the associations between these functions and arithmetic have mainly focused on associations with one 

(meta)cognitive function, and only very few studies investigated the role of each of these different 

functions simultaneously in arithmetic performance. For example, much less is known about whether, 

on the one hand, executive functioning continues to predict mathematics skills after taking numerical 
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magnitude processing into account, and, on the other hand, to what extend numerical magnitude 

processing itself and its association with arithmetic is determined by more domain-general processes 

such as executive functioning and metacognition. 

The limited research that did include different (cognitive) functions, found that this simultaneous 

investigation had an important impact on the results. For example, in their meta-analysis, Chen and Li 

(2014) found that the overall effect size of non-symbolic magnitude comparison in mathematical 

competence was significantly lower in studies controlling for general non-numerical cognitive abilities 

compared to studies not controlling for them. Likewise, Schneider et al. (2017) suggested that including 

other cognitive abilities (such as inhibition) in regression models might have a similar effect on the 

association between symbolic numerical magnitude processing and mathematics performance. 

Simanowski & Krajewski (2019) found that, after controlling for early numerical magnitude processing, 

executive functions in kindergarten were no longer predictive of mathematics skills in first and second 

grade. Furthermore, there is large theoretically overlap between executive functions and metacognition. 

Both are higher-order, control processes related to the regulation of behaviour, they follow a similar 

developmental trajectory, and studies investigating both functions simultaneously suggest that executive 

functions and metacognition are related (see Roebers & Feurer, 2015, for a short overview). Although 

there are only a small number of studies that investigate executive functions and metacognition 

simultaneously, these studies show that metacognitive skills are stronger predictors of academic 

performance (e.g. Bellon, Fias, & De Smedt, 2019; Bryce, Whitebread, & Szűcs, 2015; Roebers, Cimeli, 

Röthlisberger, & Neuenschwander, 2012). Despite these observations, studies including a variety of 

(cognitive) functions are scarce, such that for future studies it is essential include various (cognitive) 

abilities when investigating the associations between them and arithmetic performance.  

In accordance with this suggestion, Bellon et al. (2019) simultaneously investigated symbolic 

numerical magnitude processing, executive functions and metacognition in 7-8-year olds. They found 

unique roles of symbolic magnitude skills, metacognitive monitoring and updating in arithmetic 

performance, in addition to each other. On the other hand, no associations between shifting or inhibition 

and arithmetic were found. This study thus showed that when considered together, symbolic numerical 

magnitude processing, some aspects of executive functioning, and metacognition each explain unique 

variance in arithmetic skills in young primary school children.  

Yet, the study by Bellon et al. (2019), and by extension most other studies on associations between 

(meta)cognitive functions and arithmetic performance, only reports on concurrent relations, leaving 

important issues unresolved. First, it remains unknown whether the associations between arithmetic and 

these functions, when considered simultaneously, are stable over development. Second, it is unclear 

whether these (meta)cognitive functions (i.e. numerical magnitude processing, executive functions and 

metacognition) also predict later arithmetic performance, and, finally, going one step further, whether 
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they do so when prior arithmetic performance is taken into account and thus whether they contribute to 

the development of arithmetic skills. 

When the associations between arithmetic and numerical magnitude processing, executive functions 

and metacognition are studied in isolation from each other, longitudinal studies have confirmed the 

predictive power for later arithmetic performance of each of these (cognitive) functions separately. For 

example, several studies found evidence for the predictive value of numerical magnitude processing for 

later arithmetic (e.g. De Smedt, Verschaffel, & Ghesquière, 2009; Sasanguie, Van den Bussche, & 

Reynvoet, 2012; Vanbinst, Ghesquière, & De Smedt, 2015). In their meta-analysis, Schneider et al. 

(2017) showed that these associations are stronger for symbolic than for non-symbolic numerical 

magnitude processing. Within literature on the executive functions as well, there is evidence is for the 

predictive value of executive functions, especially updating skills, for later arithmetic performance (e.g. 

De Smedt, Janssen, et al., 2009; Lee & Bull, 2016; Mazzocco & Kover, 2007; Passolunghi, Mammarella, 

& Altoè, 2008; Van der Ven, Kroesbergen, Boom, & Leseman, 2012). While studies on the longitudinal 

associations between metacognition and arithmetic are scarce, the few available studies confirm the 

predictive power of metacognition for children’s later arithmetic (e.g. Rinne & Mazzocco, 2014; van 

der Stel & Veenman, 2010). 

As has been argued above when discussing the available cross-sectional studies on the associations 

between these functions and arithmetic, these longitudinal studies also focus merely on one 

(meta)cognitive function to predict later arithmetic performance. As such, they fail to identify the unique 

contributions of such functions when other critical (meta)cognitive functions that predict arithmetic are 

considered. Even more critical, most of these longitudinal studies fail to include prior arithmetic 

performance as an important predictor in their models, and hence do not investigate the importance of 

these functions relative to prior arithmetic performance. This is crucial, as extensive evidence has 

demonstrated that early academic performance is a robust indicator of later performance (e.g. Duncan 

et al., 2007). Moreover, including prior arithmetic performance importantly yields the possibility to 

investigate the predictive power of these functions for development in arithmetic (Duncan et al., 2007). 

Indeed, to thoroughly study whether a (meta)cognitive function at time point 1 predicts arithmetic at 

time point 2, it is necessary to control for arithmetic at time point 1, otherwise concurrent correlations 

between the (meta)cognitive function and arithmetic at both time points may confound the investigated 

predictive association. Namely, the predictive association between (meta)cognitive functions at time 

point 1 and arithmetic at time point 2 may then be entirely driven by the relationship between arithmetic 

at both time points (i.e. its stability).  

The current study tackles these important issues in the extant literature by, on the one hand, 

simultaneously studying the role of symbolic numerical magnitude processing, executive functions and 

metacognition in arithmetic and, at the same time, providing a longitudinal follow up of children from 

second to third grade of primary school, of which the results of the first time point (i.e. second grade) 
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have been published (Bellon et al., 2019). Using a longitudinal panel design, the current study aims to 

unravel (1) the stability of the associations found in early primary school over time and, importantly, (2) 

uncover the longitudinal associations of symbolic numerical magnitude processing, executive functions 

and metacognition with arithmetic, and (3) investigate these predictive associations when taking prior 

arithmetic performance into account. 

By following up second graders one year later, we specifically investigated these issues in a crucial 

developmental period for the investigated (meta)cognitive functions – as was discussed above – as well 

as arithmetic. At this age, arithmetic development is characterized by the transition from initial effortful 

strategies to solve basic arithmetic items (e.g. counting strategies), to efficient arithmetic strategies (e.g. 

decomposition) or automation through arithmetic fact retrieval (e.g. Siegler, 1996). Substantial 

development in children of this age is also present in symbolic numerical magnitude processing (e.g. 

Matejko & Ansari, 2016), executive functions (e.g. Carlson et al., 2013; Diamond, 2013) and 

metacognitive skills (e.g. Schneider, 2010, 2015; Schneider & Lockl, 2008). Because of these 

developmental progressions, it is likely that the interrelations between arithmetic and symbolic 

numerical magnitude processing, executive functions and metacognition might change during this 

developmental period (e.g. Bull & Lee, 2014; Van der Ven et al., 2012). Investigating the interplay of 

these variables in this critical developmental period is essential to foster learning and develop targeted 

intervention programs. 
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Methods 

1  Participants 

Participants were 121 Flemish third graders (63 girls; Mage = 8 years 8 months, SD = 3 months, range = 

8 years 2 months to 9 years 2 months). All children were participants of an ongoing longitudinal panel 

study (n = 127) of which the first time point has been published (Bellon et al., 2019); in the current 

study, the children were followed up one year later. All children were typically developing and they had 

no diagnosis of a developmental disorder. They all had a predominantly middle-to-high socioeconomic 

background. For every participant, written informed parental consent was obtained. The study was 

approved by the social and societal ethics committee of KU Leuven. 

2 Procedure 

The procedure and tasks in this longitudinal follow up were exactly the same as those at time point 

one, the findings of which were reported in Bellon et al. (2019). All participants were tested at their own 

school during regular school hours and all completed three sessions: an individual session including the 

arithmetic tasks, a session in small groups of 5 children including the computerized cognitive tasks, and 

a group-administered session including the metacognitive questionnaire and the measure of intellectual 

ability. The sessions took about 30, 40, and 60 min, respectively. All children completed the tasks in the 

same order. 

3 Materials 

3.1 Arithmetic 

Arithmetic was assessed with two single-digit computerized production tasks, namely addition and 

multiplication, presented in separate tasks (i.e. 64 items for each task). Arithmetic items were presented 

on the computer screen and children were asked to answer verbally, as quickly and accurately as 

possible. For each task, stimuli were pseudo-randomly divided into two blocks (i.e. one of each 

commutative pair in each block). During the second block of each arithmetic task, a specific 

metacognitive monitoring measure was added to the task (see below). Performance measures were 

accuracy of the answers and average RT for correct responses, which were calculated for each operation 

separately. 

3.2 Executive functions 

Executive functioning was measured with computerized inhibition, shifting, and updating tasks. 

None of the executive functions tasks included numerical stimuli, which allowed us to investigate 

executive functions without numerical processing confounds. 
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3.2.1 Inhibition. 

We used a classic arrow Flanker task (Eriksen & Eriksen, 1974; Huizinga et al., 2006), a speeded 

choice reaction time task where participants needed to respond to target stimuli (i.e. a left or right 

pointing arrow presented at the centre of the screen) flanked by distractors (i.e. two arrows on each side 

of the target). Items were part of the congruent condition if all arrows pointed in the same direction; 

items were part of the incongruent condition if the distractors pointed to the opposite direction as the 

target. Congruent and incongruent items were presented interchangeably within the task. In total 40 

items were presented. Children needed to indicate the direction of the middle arrow while suppressing 

the direction of the distractors. In the baseline condition only one arrow was shown so the task was the 

same, but suppressing information was not necessary. 

An animal Stroop task (based on Szűcs, Devine, Soltesz, Nobes, & Gabriel, 2013) was additionally 

administered. In this task children had to indicate which animal of two simultaneously presented images 

of coloured animals was larger in real life. One animal image was presented with an area on the screen 

four times larger than the other image, yielding two conditions (i.e. congruent condition in which the 

larger animal in real life was the larger image on the screen; incongruent in which the larger animal in 

real life was the smaller image on the screen). In total 40 items were administered. Children were 

required to ignore the size of the images on the screen and to respond based on the animal size in real 

life only. In the baseline condition all animals on screen had the same size so that the task was the same, 

but suppressing information was not necessary. 

Because both accuracy and RT constitute essential parts of inhibition, we calculated inverse 

efficiency (IE) scores (i.e. average RT for correct answers divided by average accuracy) for both 

inhibition tasks. Based on the previous study with these tasks in this population (Bellon et al., 2019), the 

IE of items in the incongruent condition were used as performance measure. The IE of items in the 

baseline conditions were used as a control in the analyses. 

3.2.2 Shifting.  

To measure shifting skills, we used the Wisconsin Card Sorting Task (WCST; Grant & Berg, 1948), 

in which participants needed to determine how to sort cards on the basis of unspecified categories (i.e. 

shape and colour). Children were given no explicit instructions about the sorting rules; these needed to 

be inferred based on the feedback that was given after every item. Without notice, the sorting rule 

changed after a variable number (seven, eight, or nine) of consecutive correct responses. After this 

switch item, children needed to disengage from the previous sorting rule and discover and/or apply the 

other sorting rule. The sorting rule changed 20 times during the whole task. The performance measure 

was the average number of items a child needed to switch between rules. 
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3.2.3 Updating skills.  

Updating was assessed by means of a standard 2-back task (Pelegrina et al., 2015). In this continuous 

recognition task, a sequence of items is shown. For each item, participants had to indicate whether the 

presented stimulus was identical to the stimulus presented 2 trials back. Two blocks of 20 items were 

administered. The performance measure was the accuracy of the answer. 

3.3 Metacognition 

Two aspects of metacognition, namely general metacognitive knowledge and metacognitive 

judgments incorporated into the arithmetic task, were included in this study.  

3.3.1 General metacognitive knowledge.  

To measure metacognitive abilities independent of arithmetic, we used a general metacognitive 

questionnaire (Haberkorn et al., 2014), in which 15 situations involving mental performance were 

described together with two possible strategies. Children indicated which of the two strategies they 

thought fitted the situation the best, or they could indicate that both solutions were equally good. The 

performance measure was the number of correct answers. 

3.3.2 Metacognitive monitoring.  

On a trial-by-trial basis, children were asked to judge the accuracy of their answer (e.g. Bellon et al., 

2019; Rinne & Mazzocco, 2014) during the second block of both arithmetic tasks (32 items for each 

operation). After giving their answer to the arithmetic problem, children needed to indicate if they 

thought their answer was “Correct”, “Incorrect” or if they “Did not know”. The alignment between one’s 

judgment on the accuracy of the answer and the accuracy of the answer itself was calculated as a measure 

of metacognitive monitoring: A correct arithmetic answers yielded a score of 2 if children said they were 

correct, 1 if they said they did not know, or 0 if they said they were incorrect. This scale was reversed 

when the arithmetic answer was incorrect. The metacognitive monitoring score per child was the mean 

of all monitoring scores (i.e. monitoring score per item; n = 32) and was calculated for each arithmetic 

task separately. 

3.4 Numerical magnitude processing 

A symbolic numerical magnitude comparison task was used to assess children’s symbolic numerical 

magnitude processing skills. Participants had to indicate which of two simultaneously presented Arabic 

digits was numerically larger. The performance measure was average RT of correct responses on the 72 

administered trials. 

3.5 Control variables 

Intellectual ability was assessed by means of the Raven’s Standard Progressive Matrices (Raven et 

al., 1992). The performance measure was the number of correctly solved patterns. A motor speed task 

was included as a control for children’s response speed on the keyboard (De Smedt & Boets, 2010). 
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Two shapes were simultaneously presented on either side of the screen, and children needed to indicate 

which of the two shapes was filled. The performance measure was average RT of correct responses in 

the 20 trials. 

 

4 Data analysis 

We ran frequentist and Bayesian analyses using both univariate and multivariate techniques. Hence, 

we were able to explore our data by means of a well-known method to gauge statistical support for the 

hypotheses of interest (i.e. frequentist statistics), while at the same time allowing us to test the degree of 

support for a hypothesis (i.e. degree of strength of evidence in favour of or against any given hypothesis; 

i.e. using Bayes Factors). Bayes factors were interpreted following the classification scheme in 

(Andraszewicz et al., 2015). 

For the Pearson correlation analyses, we used a default prior width set to 1, provided by the statistical 

program JASP (JASP, 2019). In the regression analyses, to quantify the evidence in favour of our 

hypotheses, a BFinclusion was calculated for every predictor in the model. The BFinclusion represents the 

change from prior to posterior odds (i.e. BF10), where the odds concern all the models with a predictor 

of interest to all models without that predictor (i.e. a Bayes factor for including a predictor averaged 

across the models under consideration). We used a default prior width provided by JASP of .354 (prior 

for r scale covariates) for all linear regression analyses. 

 

Results 

The results on time point 1 (T1) have been reported in Bellon et al. (2019). Below the results of the 

study on time point 2 (T2) and the results of the longitudinal analyses (i.e. combining data from T1 and 

T2) can be found. 

 

1 Cross-sectional analyses at T2 

1.1 Descriptive statistics 

The descriptive statistics of the key variables measured at T2 are presented in Table 3.1. A table with 

descriptive statistics of all administered measures at T2 – including control variables and baseline 

conditions – can be found in Appendix A. 
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Table 3.1  

Descriptive statistics of the key variables at T2  

 n M SD Range 

Arithmetic     

Addition      

Accuracy 121 .97 .03 [.84-1.00] 

Response time (ms) 121 2577.92 846.50 [1410.31-

6102.02] 

Multiplication     

Accuracy 121 .93 .07 [.66-1.00] 

Response time (ms) 121 4341.55 1955.00 [1474.02-

14792.50] 

Numerical magnitude processing      

Symbolic numerical magnitude 

comparison task 

    

Response time (ms) 121 745.59 132.90 [520.17-

1212.37] 

Executive functions     

Inhibition      

Flanker task – 

incongruent condition 

    

Accuracy 121 .93 .08 [.58-1.00] 

Response time 

(ms) 

121 776.33 169.02 [505.74-

1392.89] 

Inverse efficiency 

(RT/accuracy)a 

121 856.32 235.74 [548.68-

1784.65] 

Animal Stroop task – 

incongruent condition 

    

Accuracy 121 .93 .07 [.75-1.00] 

Response time 

(ms) 

121 926.27 179.71 [560.90-

1758.65] 

Inverse efficiency 

(RT/accuracy)a 

121 1006.15 221.05 [623.22-

2344.87] 

Shifting     

WCST (average # items 

needed to switch)b 

119 5.62 4.90 [2-46] 

Updating      

2-back task (accuracy) 121 .75 .06 [.47-.87] 

Metacognition     

General metacognitive knowledge     

General metacognitive 

questionnaire (# correct)c 

121 11.01 2.27 [3-15] 

Metacognitive monitoring d      

In addition task 121 1.88 0.13 [1.44-2.00] 

In multiplication task 121 1.86 0.13 [1.34-2.00] 
Note. All response time variables are average response time for the correct responses. a Inverse efficiency scores 

were calculated by dividing the response time by the accuracy; the higher the score, the worse the performance; b 

Score = total number of items needed to switch divided by number of blocks completed; c Number of correct 

answers; d Alignment between children’s metacognitive judgment and the accuracy of their arithmetic answer, i.e. 

correct arithmetic answers yielded a score of 2 if children said they were Correct, 1 if they said I am not sure, and 

0 if they said they were Incorrect; this scale was reversed when the arithmetic answer was incorrect. The higher 

the score, the better the metacognitive monitoring. 
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1.2 Correlational analyses 

Pearson correlation coefficients were calculated to examine the associations between the different 

variables under study and addition (Table 3.2a), and multiplication performance (Table 3.2b). A full 

matrix of all intercorrelations is provided in Appendix B. 

Table 3.2a  

Correlation analyses of the accuracy and response time (RT) of addition 

Variable Addition accuracy Addition RT 

 r p BF10 r p BF10 

Symbolic numerical 

magnitude processing 

(RT)a, b 

.07 .43 0.16 .46 <.001 >100 

       

Executive functions       

Inhibition – Flanker (IE)a,c -.12 .19 0.27 .09 .32 0.19 

Inhibition – Stroop (IE) a, d -.12 .18 0.28 .04 .67 0.13 

Shifting a (average # items 

needed to switch)  
.05 .63 0.13 -.01 .96 0.12 

Updating (accuracy) e .10 .30 0.19 -.25 .006 4.62 

       

Metacognition       

General metacognitive 

knowledge (# correct) e 
.14 .13 0.36 -.31 .001 36.27 

Metacognitive monitoring 

– Addition e .48 <.001 >100 -.38 <.001 >100 

Note. a The higher the scores, the worse the performance; b Controlled for performance on the motor speed task 

(RT); c Controlled for the Flanker task baseline condition (IE); d Controlled for the animal Stroop task baseline 

condition (IE); e The higher the score, the better the performance. 
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Table 3.2b  

Correlation analyses of the accuracy and response time (RT) of multiplication 

Variable Multiplication accuracy Multiplication RT 

 r p BF10 r p BF10 

Symbolic numerical 

magnitude processing 

(RT)a, b 

-.22 .02 1.88 .35 <.001 >100 

       

Executive functions       

Inhibition – Flanker 

(IE)a,c 
-.18 .05 0.82 .04 .63 0.13 

Inhibition – Stroop (IE) a, d -.04 .64 0.13 .11 .24 0.23 

Shifting a (average # items 

needed to switch)  
-.15 .10 0.44 .13 .17 0.29 

Updating (accuracy) e .01 .95 0.11 -.09 .30 0.19 

       

Metacognition       

General metacognitive 

knowledge (# correct) e .14 .14 0.34 -.16 .08 0.51 

Metacognitive monitoring 

– Multiplication e 
.58 <.001 >100 -.36 <.001 >100 

Note. a The higher the scores, the worse the performance; b Controlled for performance on the motor speed task 

(RT); c Controlled for the Flanker task baseline condition (IE); d Controlled for the animal Stroop task baseline 

condition (IE); e The higher the score, the better the performance. 

 

1.2.1 Numerical magnitude processing.  

Symbolic numerical magnitude processing was significantly related to addition and multiplication 

RT: Children with better symbolic numerical magnitude processing skills performed faster when doing 

arithmetic. Bayes factors indicated decisive evidence for these associations. There was anecdotal 

evidence for the association between symbolic numerical magnitude processing and multiplication 

accuracy. The null hypothesis was supported for the association between addition accuracy and symbolic 

numerical magnitude processing RT.  

1.2.2 Executive functions.  

Accuracy on the updating task was significantly correlated with addition RT, indicating that children 

with better updating skills were faster to give a correct response in the addition task. The Bayes factor 

indicated moderate evidence for this association. There were no other significant and supported 

correlations with the remaining executive functioning variables. Moreover, the Bayes factors indicated 

evidence in favour of the null hypotheses for all these associations. 

1.2.3 Metacognition.  

General metacognitive knowledge was significantly associated with addition RT, indicating that 

children with better global metacognitive knowledge performed faster on the addition task. The Bayes 

factor indicated very strong evidence in favour of this association. There was anecdotal evidence for the 
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null hypothesis for the associations of addition and multiplication accuracy, and multiplication RT with 

general metacognitive knowledge.  

Metacognitive monitoring skills were significantly related to performance (i.e. accuracy and RT) in 

both arithmetic tasks, with Bayes factors indicating decisive evidence. This suggests that children with 

better on-task metacognitive monitoring skills performed better (i.e. faster and more accurate) in the 

arithmetic tasks. 

1.3 Regression analyses 

Regression analyses were performed to assess the unique contribution of the different 

(meta)cognitive functions to concurrent arithmetic performance: All variables that were significantly 

related to addition and/or multiplication performance and for which Bayesian analyses indicated more 

than anecdotal evidence in favour of an association were entered simultaneously into the regression 

model. Table 3.3 presents the results of our regression analyses.  

Table 3.3a  

Regression analyses of arithmetic accuracy 

Variable Addition accuracy 

(R² = .26) 

Multiplication accuracy  

(R² = .36) 

 β t p BFinclusion β t p BFinclusion 

Intelligence  

(# correct)a .19 2.44 .02 5.52 .18 2.40 .02 4.36 

Metacognitive 

monitoring a, b .46 5.84 <.001 >100 .55 7.48 <.001 >100 

Note. a The higher the score, the better the performance. b Metacognitive monitoring in the addition task for addition 

accuracy, Metacognitive monitoring in the multiplication task for multiplication accuracy. 

 

Table 3.3b  

Regression analyses of arithmetic RT 

Variable Addition RT (R² = .39) Multiplication RT (R² = .27) 

 β t p BFinclusion β t p BFinclusion 

Motor speed task 

(RT)a .04 0.44 .66 0.62 .14 1.65 .10 1.40 

Symbolic numerical 

magnitude processing 

(RT)a 

.44 5.63 <.001 >100 .34 3.95 <.001 >100 

Updating (accuracy) b  -.10 -1.33 .19 1.12 .01 0.17 .86 0.51 

General metacognitive 

knowledge b -.14 -1.92 .06 2.55 -.04 -0.42 .67 0.56 

Metacognitive 

monitoring b, c 
-.29 -3.80 <.001 >100 -.32 -3.97 <.001 >100 

Note. a The higher the scores, the worse the performance; b The higher the score, the better the performance; c 

Metacognitive monitoring in the addition task for addition RT, Metacognitive monitoring in the multiplication 

task for multiplication RT. 
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1.3.1 Arithmetic accuracy. 

Accuracy in both addition and multiplication was significantly predicted by metacognitive 

monitoring and intelligence. The evidence for the contribution of metacognitive monitoring was 

decisive. 

1.3.2 Arithmetic RT. 

Response time in both addition and multiplication was significantly predicted by symbolic numerical 

magnitude processing and metacognitive monitoring. The evidence for the contribution of these 

predictors was decisive for both symbolic numerical magnitude processing and metacognitive 

monitoring. Anecdotal evidence was found for the predictive power of general metacognitive knowledge 

for addition RT. There was no evidence in favour or against an association between addition RT and 

updating. Anecdotal evidence for the null hypothesis was found concerning the associations of 

multiplication RT with updating and with general metacognitive knowledge. 

1.4 Interim summary cross-sectional results 

A comparison of the results at T1 (Bellon et al., 2019), when the participants were in second grade 

(i.e. 7-8-years-old), with the results of the current follow up at T2 (i.e. third grade, 8-9-years-old) 

revealed that the associations found between symbolic numerical magnitude processing and arithmetic, 

between addition RT and general metacognitive knowledge, and between metacognitive monitoring and 

arithmetic are stable effects, found at both time points. Less stable effects were found for the executive 

functions: Updating was no longer significantly correlated with addition accuracy, but was significantly 

correlated with addition RT at T2, although there was no evidence for the unique predictive power of 

updating for concurrent addition RT. Additionally, updating was no longer significantly correlated with 

multiplication performance at T2. While at T1 the result on the association of addition with performance 

on the animal Stroop task was indecisive (i.e. with a Bayes factor of 1 for the association), the results at 

T2 clearly indicate evidence for the null hypothesis. 
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2 Longitudinal correlational analyses 

Pearson correlation coefficients were calculated to examine the longitudinal associations between 

the different variables measured at T1 (i.e. second grade) and addition (Table 3.4a) and multiplication 

performance (Table 3.4b) measured at T2 (i.e. third grade). A full matrix of all longitudinal 

intercorrelations is provided in Appendix C. 

 

Table 3.4a  

Longitudinal correlations of the accuracy and response time (RT) of addition at T2 

Variable Addition accuracy T2 Addition RT T2 

 r p BF10 r p BF10 

Arithmetic T1       

Prior addition 

performance a 
.47 <.001 >100 .78 <.001 >100 

       

Symbolic numerical 

magnitude processing  

(RT) T1 b, f 

.12 .19 0.27 .41 <.001 >100 

       

Executive functions T1       

Inhibition –  

Flanker (IE) b, c 
-.11 .24 0.23 -.01 .93 0.12 

Inhibition –  

Stroop (IE) b, d -.11 .25 0.22 .08 .42 0.16 

Shifting b (average # items 

needed to switch)  
.06 .55 0.14 -.08 .39 0.17 

Updating (accuracy) e .17 .06 0.76 -.10 .25 0.23 

       

Metacognition T1       

General metacognitive 

knowledge (# correct) e 
.01 .94 0.11 -.32 <.001 72.89 

Metacognitive monitoring 

– Addition e .33 <.001 76.80 .32 <.001 62.01 

Note. a Addition accuracy T1 for addition accuracy T2, Addition RT T1 for addition RT T2; b The higher the scores, 

the worse the performance; c Controlled for the Flanker task baseline condition (IE); d Controlled for the animal 

Stroop task baseline condition (IE); e The higher the score, the better the performance; f Controlled for performance 

on the motor speed task (RT). 
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Table 3.4b  

Longitudinal correlations of the accuracy and response time (RT) of multiplication at T2 

Variable Multiplication accuracy T2 Multiplication RT T2 

 r p BF10 r p BF10 

Arithmetic T1       

Prior multiplication 

performance a 
.54 <.001 >100 .64 <.001 >100 

       

Symbolic numerical 

magnitude processing  

(RT) T1 b, f 

-.004 .97 0.11 .34 <.001 >100 

       

Executive functions T1       

Inhibition –  

Flanker (IE) b, c -.01 .92 0.12 -.03 .74 0.12 

Inhibition –  

Stroop (IE) b, d -.14 .14 0.33 .04 .70 0.12 

Shifting b (average # items 

needed to switch)  
-.15 .11 0.42 .04 .64 0.13 

Updating (accuracy) e .19 .03 1.27 .01 .92 0.11 

       

Metacognition T1       

General metacognitive 

knowledge (# correct) e 
.16 .08 0.52 -.30 .001 32.87 

Metacognitive monitoring 

– Multiplication e .40 <.001 >100 -.21 .02 1.55 

Note. a Multiplication accuracy T1 for multiplication accuracy T2, Multiplication RT T1 for multiplication RT T2; 

b The higher the scores, the worse the performance; c Controlled for the Flanker task baseline condition (IE); d 

Controlled for the animal Stroop task baseline condition (IE); e The higher the score, the better the performance; f 

Controlled for performance on the motor speed task (RT). 

 

2.1 Numerical magnitude processing 

Symbolic numerical magnitude processing was significantly correlated with later RT in arithmetic, 

indicating that children with better symbolic numerical magnitude processing skills were faster to give 

a correct answer in an addition and in a multiplication task one year later. The null hypotheses were 

supported for the associations between symbolic numerical magnitude processing and later arithmetic 

accuracy. 

2.2 Executive functions 

Updating measured at T1 was significantly related to multiplication accuracy at T2, yet, the Bayes 

factor indicated there was only anecdotal evidence for this association. Associations with all other 

executive functions were non-significant and all Bayes factors indicated evidence for the null 

hypotheses. 
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2.3 Metacognition 

General metacognitive knowledge was significantly related to later arithmetic RT, with Bayes factors 

indicating very strong evidence in favour of these associations. General metacognitive knowledge did 

not significantly correlate with arithmetic accuracy, with Bayes factors indicating strong to anecdotal 

evidence in favour of the null hypotheses. 

Metacognitive monitoring was significantly correlated with arithmetic performance one year later, 

indicating that children with better metacognitive monitoring skills early in primary school, performed 

better (i.e. faster and more accurate) in arithmetic one year later. Bayes factors indicated there was strong 

evidence in favour of the correlation between metacognitive monitoring and later addition performance 

(i.e. accuracy and RT) and decisive evidence for later multiplication accuracy. There was only anecdotal 

evidence in favour of the association between metacognitive monitoring and later multiplication RT. 

 

3 Longitudinal regression analyses 

Longitudinal regression analyses were performed to assess the unique contribution of the different 

cognitive variables to arithmetic performance one year later: All variables that were significantly related 

to addition and/or multiplication performance and for which Bayesian analyses indicated more than 

anecdotal evidence in favour of an association, were entered simultaneously into a first regression model 

(Model 1). In a second regression model (Model 2), respective prior arithmetic performance was added 

to the model. Table 3.5 presents the results of these regression analyses.  

Table 3.5a  

Regression analyses of arithmetic accuracy 

Variables T1 Addition accuracy T2  Multiplication accuracy T2  

 β t p BFinclusion Β t p BFinclusion 

Model 1 – Without prior arithmetic performance 
Intelligence  

(# correct) a .27 3.24 .002 46.16 .25 3.11 .002 31.14 

Metacognitive 

monitoring a, b 

.29 3.43 .001 79.81 .37 4.52 <.001 >100 

Model 2 – With prior arithmetic performance 

Intelligence  

(# correct) a 
.19 2.28 .02 3.28 .18 2.24 .03 2.49 

Metacognitive 

monitoring a, b 

.12 1.30 .20 1.05 -.03 -.27 .79 0.45 

Prior arithmetic 

accuracy b 
.36 3.77 <.001 >100 .52 4.13 <.001 >100 

Note. a The higher the score, the better the performance; b Metacognitive monitoring in the addition task for addition 

accuracy, Metacognitive monitoring in the multiplication task for multiplication accuracy.  
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Table 3.5b  

Regression analyses of arithmetic RT 

Variables T1 Addition RT T2  Multiplication RT T2  

 β t p BFinclusion β t p BFinclusion 

Model 1 – Without prior arithmetic performance 
Motor speed task (RT)a -.15 -1.82 .07 3.85 -.08 -.88 .38 1.17 

Symbolic numerical 

magnitude processing 

(RT) a 

.40 4.87 <.001 >100 .33 3.34 <.001 >100 

General metacognitive 

knowledge b 

-.24 -3.07 .003 32.35 -.23 -2.73 .01 11.52 

Metacognitive 

monitoring b, c 

-.31 -4.12 <.001 >100 -.20 2.44 .02 6.35 

Model 2 – With prior arithmetic performance 

Motor speed task (RT)a -.08 -1.24 .22 .33 -.06 -.80 .43 0.44 

Symbolic numerical 

magnitude processing 

(RT) a 

.16 2.40 .02 1.17 .17 2.24 .03 2.06 

General metacognitive 

knowledge b 

-.13 -2.12 .04 1.06 -.18 -2.53 .01 4.48 

Metacognitive 

monitoring b, c 

-.12 -1.94 .06 0.67 -.08 -1.17 .24 0.58 

Prior arithmetic RT c .65 9.85 <.001 >100 .55 7.43 <.001 >100 
Note. a The higher the scores, the worse the performance; b The higher the score, the better the performance; c 

Metacognitive monitoring in the addition task for addition RT, Metacognitive monitoring in the multiplication 

task for multiplication RT. 

 

3.1 Arithmetic accuracy 

Arithmetic accuracy was significantly predicted by earlier metacognitive monitoring performance, 

in addition to the predictive power of intelligence. However, once prior arithmetic performance was 

taken into account, there was no evidence for or against the predictive power of metacognitive 

monitoring. Prior arithmetic accuracy significantly predicted later arithmetic accuracy, with Bayes 

factors indicating decisive evidence for the predictive power of earlier performance.  

3.2 Arithmetic RT 

Arithmetic response time was significantly predicted by earlier symbolic numerical magnitude 

processing, general metacognitive knowledge, and metacognitive monitoring performance, in addition 

to each other. Once prior arithmetic performance (i.e. RT) was additionally taken into account, there 

was anecdotal and moderate evidence for the predictive power for multiplication RT of symbolic 

numerical magnitude processing and general metacognitive knowledge, respectively, but no evidence 

for or against their predictive power for addition RT. There was no evidence for or against the predictive 

power of metacognitive monitoring for later arithmetic RT. Prior arithmetic RT significantly predicted 

later arithmetic RT, with Bayes factors indicating decisive evidence for the predictive power of earlier 

arithmetic performance.  
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Discussion 

Numerous studies have highlighted the importance of symbolic numerical magnitude processing (see 

Schneider et al., 2017, for a meta-analysis), executive functions (see Friso-Van Den Bos et al., 2013, for 

a meta-analysis) and metacognition (e.g. Schneider & Artelt, 2010) for arithmetic. Yet, few studies have 

considered different functions simultaneously, and even fewer studies did so in a longitudinal way. As 

a result, there is a lack of a comprehensive understanding of the role of these functions in arithmetic. 

Therefore, the current study combined (a) a simultaneous investigation of these (meta)cognitive 

functions – which have been identified as important for arithmetic performance and development when 

investigated in isolation but have not been studied in concert, and (b) a longitudinal panel design – which 

allows us to investigate the predictive power of these functions for later arithmetic performance taking 

into account prior arithmetic performance. Importantly, this investigation was done in a crucial 

developmental period for all of the included functions (i.e. arithmetic, numerical magnitude processing, 

executive functions, metacognition). Our data show the important, unique roles of symbolic numerical 

magnitude processing and metacognition in arithmetic and indicate that executive functions are not so 

strong predictors of individual differences in arithmetic, when different other important functions are 

considered. On the other hand, our longitudinal data also indicate the strongest, most robust predictive 

role of prior arithmetic performance for later performance. In the remainder of this discussion, we first 

discuss the cross-sectional results exploring the stability of the associations over time. Second, we 

consider the longitudinal associations between the (meta)cognitive functions and arithmetic and 

examine the predictive power of these (meta)cognitive functions for arithmetic, in addition to each other. 

Next, we discuss the additional predictive value of the (meta)cognitive functions once prior arithmetic 

performance is taken into account. We conclude with suggestions for future research. 

1 Cross-sectional results 

Taken together with the results of the first time point (Bellon et al., 2019), the cross-sectional results 

of the second time point (i.e. in third graders) provide insight into the stability of the associations found 

in early primary school over time. As such, the current study provides, for each (meta)cognitive process, 

a more comprehensive image of its role throughout arithmetic development in early to middle primary 

school. 

Symbolic numerical magnitude processing was reliably associated with arithmetic skills over 

development (i.e. both in second and third grade), which is in line with the meta-analytic findings of 

(Schneider et al., 2017). Several underlying mechanisms might be at play in the concurrent associations 

between symbolic numerical magnitude processing and arithmetic. A possible explanation of this 

association might be that the measures of arithmetic performance require the interpretation and 

transformation of information presented in symbolic form (i.e. Arabic numerals; Schneider et al., 2017). 
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Furthermore, a good understanding of the numbers in terms of their magnitudes can be helpful for 

choosing an efficient calculation strategy (e.g. Linsen et al., 2015). 

The results shows a less clear role of executive functions in explaining individual differences in 

arithmetic in both grades, with even a slight decrease in the role of executive functions over 

development. This indicates that over development, executive functions, being effortful processes in 

nature (Diamond, 2013), take a less prominent place in individual differences in arithmetic, as over time 

arithmetic develops from a skill relying on effortful strategies to efficient, automatized problem solving 

or fact retrieval. A similar conclusion was made by Lee and Bull (2016), who found that the correlation 

between executive functions and mathematics performance varied across grade, with the strongest 

relations in early primary school compared to later in development. This could be due to the fact that 

single-digit arithmetic is fairly easy for children upward of middle primary school, requiring less 

executive resources at that time. It is plausible that a more prominent role for executive functions would 

have been found if more difficult arithmetic items (e.g. multi-digit arithmetic) were included. 

The pattern of results concerning the associations with metacognition shows stable effects, as general 

metacognitive knowledge is reliably associated with addition RT (i.e. at both time points), and 

metacognitive monitoring is reliably associated with arithmetic performance at both time points. One 

reason why general metacognitive knowledge might be specifically associated with concurrent addition 

and not multiplication, could be that within multiplication the focused-on strategy is rote memorization 

of multiplication tables, whereas in addition metacognitive strategy selection (e.g. Geurten et al., 2018) 

may be more important. To fully understand the association between general metacognitive knowledge 

and multiplication RT, more research is needed, as Bayes factors indicated there was no evidence for or 

against these associations at both time points. The stable associations of metacognitive monitoring with 

concurrent arithmetic performance across development indicate that correctly appraising your 

performance is not only important in the early learning stages of arithmetic performance, but also later 

in development (in line with Rinne & Mazzocco, 2014), over and above other important cognitive 

functions.  

2 Longitudinal results 

The abovementioned concurrent results, however, do not answer critical questions on the 

longitudinal associations between these variables, and the unique, predictive value of these 

(meta)cognitive functions for later arithmetic performance, in addition to each other. Therefore, the 

current study also investigated the longitudinal associations. 

The current results show clear evidence for a longitudinal association between symbolic numerical 

magnitude processing in early primary school and arithmetic RT one year later. In line with the existing 

literature (e.g. De Smedt et al., 2013; De Smedt, Verschaffel, et al., 2009; Sasanguie, Göbel, Moll, 

Smets, & Reynvoet, 2013; Schneider et al., 2017; Vanbinst et al., 2015), our longitudinal analyses show 
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that there is a clear predictive role of symbolic numerical magnitude processing for arithmetic RT. 

Importantly, in accordance with the critical need to include non-numerical functions when investigating 

the role of symbolic numerical magnitude processing in mathematics (Schneider et al., 2017), this study 

additionally confirms the predictive role of symbolic numerical magnitude processing over other 

important (meta)cognitive functions. Along with the abovementioned mechanisms underlying 

concurrent associations between symbolic numerical magnitude processing and arithmetic, proficient 

numerical magnitude processing skills might induce the transition to more efficient strategies based on 

the characteristics of the numbers in the problem (Booth & Siegler, 2008). Moreover, arithmetic facts 

might be stored in long-term memory in a meaningful way, i.e. according to their magnitude (e.g. 

Butterworth, Zorzi, Girelli, & Jonckheere, 2001; Verguts & Fias, 2005) and meaningful facts might be 

easier to store and recall from memory (e.g. Robinson, Menchetti, & Torgesen, 2002). 

While the results on the longitudinal association between updating and arithmetic accuracy provided 

no evidence for or against an association, it was clear that updating was not a strong predictor of later 

arithmetic performance. Thus, the predictive role of updating found in previous research (e.g. Bull & 

Lee, 2014; Friso-Van Den Bos et al., 2013; Van der Ven et al., 2012) was not confirmed in the current 

study, which could be due to the differences in the investigated mathematics subdomain (e.g. Best, 

Miller, & Naglieri, 2011; Van der Ven et al., 2012). The current study examined the predictive power 

of updating in arithmetic, whereas most studies use general mathematics tests, for which higher 

correlations with executive functions are consistently found (Friso-Van Den Bos et al., 2013). In line 

with results on the concurrent associations of arithmetic with executive functions, the current study 

shows clear evidence for the absence of longitudinal associations between inhibition and shifting, and 

arithmetic. Going one step further, the current study shows a lack of their predictive power for later 

arithmetic performance, which is in line with the existent literature (e.g. Bull & Lee, 2014; Van der Ven 

et al., 2012). In general, it is not unlikely that the role of executive functions is dependent on the learning 

stage and experience of children and thus decreases over development once arithmetic reaches an 

predominantly automatic level that comes with additional practice (Lee & Bull, 2016; Vanbinst & De 

Smedt, 2016a). As Holmes, Gathercole, and Dunning (2009) suggest, executive functions might be 

especially important for the acquisition of mathematical skills, and less so later in development of that 

skill. 

In line with previous research, metacognitive monitoring was found to be an important predictor of 

later arithmetic (e.g. Carr, Alexander, & Folds-Bennett, 1994; Carr & Jessup, 1995; Rinne & Mazzocco, 

2014). Importantly, this study is the first to show a clear predictive role of metacognition for arithmetic 

in younger primary school children, and, in particular, in addition to other important cognitive functions, 

thereby highlighting its importance for arithmetic. A possible underlying mechanism could be that better 

insight in one’s own performance (e.g. better detection of errors) creates more learning moments in 
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which incorrect arithmetic answers are detected and possibly replaced with new, correct answers. In 

turn, this could lead to better arithmetic performance.  

Due to the longitudinal panel design of this study, we were also able to take into account prior 

arithmetic performance. This is of utmost importance, as the strongest and most robust predictor of a 

child’s later academic performance is their earlier academic performance (Duncan et al., 2007). As a 

result, controlling for prior performance is necessary to obtain insight into how these (meta)cognitive 

variables predict the development of arithmetic between the time points. 

The current study importantly shows that the evidence for added value of symbolic numerical 

magnitude processing in predicting development in arithmetic over prior arithmetic performance in the 

exact same task, is only anecdotal, as was the additional predictive power of general metacognitive 

knowledge for addition RT. The evidence for the predictive power of general metacognitive knowledge 

for multiplication RT, on the other hand, was moderate. Lastly, once prior arithmetic performance was 

taken into account, there was no evidence for or against the predictive power of metacognitive 

monitoring. The substantial decrease in predictive power of the (meta)cognitive functions for arithmetic 

once prior arithmetic performance is taken into account, is not surprising, given the very strong 

autoregressive effect (i.e. r = .78 for addition; r = .64 for multiplication). Therefore, the found anecdotal 

evidence for the predictive power of symbolic numerical magnitude processing is still meaningful. The 

results also emphasize the importance of metacognitive knowledge for arithmetic development, which 

was strongest for multiplication RT, possibly due to the larger development in multiplication RT 

compared to addition RT in this developmental period. The predictive role of general metacognitive 

knowledge for later arithmetic, over prior arithmetic performance, was also stronger compared to 

numerical magnitude processing and metacognitive monitoring, which could be due to a larger overlap 

of numerical magnitude processing and metacognitive monitoring with the arithmetic task compared to 

the metacognitive questionnaire. In general, however, these results indicate that the investigated 

(meta)cognitive functions play a larger role in concurrent performance than they do in development of 

arithmetic (i.e. change in arithmetic performance from second to third grade). The results confirm the 

strong, robust predictive value of prior arithmetic performance for later arithmetic performance. 

The design of the current study proves to be a valuable direction for future research to yield a 

thorough understanding of the interplay between symbolic numerical magnitude processing, executive 

functions and metacognition in mathematics performance and development. Therefore, future studies 

should explore this developmental interplay in more advanced arithmetic tasks (e.g. multi-digit 

arithmetic) or in other mathematical subdomains (e.g. fractions). Because longitudinal studies are unable 

to establish causality, future studies should also consider experimental designs in which the current 

(meta)cognitive functions are manipulated to investigate their causal relation with arithmetic. Training 

or intervention studies should be used to yield a deeper understanding of the unique role of these 

(meta)cognitive functions, but also to possibly foster arithmetic performance and development. 
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Conclusion 

In sum, this study yields a deeper understanding of the role of symbolic numerical magnitude 

processing, executive functions and metacognition in arithmetic performance and development in 

primary school children. Our data show the important, unique role of symbolic numerical magnitude 

processing and metacognition in arithmetic and indicate that executive functions are not so strong 

predictors of individual differences in arithmetic, when different other important functions are 

considered. Additionally, the strong, robust predictive value of prior arithmetic performance for later 

arithmetic performance was confirmed. 
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Appendixes 

1 Appendix A – Descriptive statistics of all administered cross-sectional data in third graders 

Table 3.A1   

Descriptive statistics of all administered variables 

 n M SD Range 

Arithmetic     

Addition      

Accuracy 121 .97 .03 [.84-1.00] 

Response time (ms) 121 2577.92 846.50 [1410.31-

6102.02] 

Multiplication     

Accuracy 121 .93 .07 [.66-1.00] 

Response time (ms) 121 4341.00 1955.00 [1474.02-

14792.50] 

Numerical magnitude processing      

Symbolic numerical magnitude 

comparison task 

    

Response time (ms) 121 745.59 132.90 [520.17-

1212.37] 

Executive functions     

Inhibition      

Flanker task – baseline      

Accuracy 121 .94 .08 [.6-1.00] 

Response time 

(ms) 

121 582.75 86.47 [393.7-811.2] 

Inverse efficiency 

(RT/accuracy)a 

121 619.14 88.41 [437.44-901.33] 

Flanker task – 

incongruent condition 

    

Accuracy 121 .93 .08 [.58-1.00] 

Response time 

(ms) 

121 776.33 169.02 [505.74-

1392.89] 

Inverse efficiency 

(RT/accuracy)a 

121 856.32 235.74 [548.68-

1784.65] 

Animal Stroop task – 

baseline 

    

Accuracy 121 .98 .04 [.85-1.00] 

Response time 

(ms) 

121 856.83 163.03 [485.90-

1325.65] 

Inverse efficiency 

(RT/accuracy)a 

121 875.40 167.55 [485.90-

1395.42] 

Animal Stroop task – 

incongruent condition 

    

Accuracy 121 .93 .07 [.75-1.00] 

Response time 

(ms) 

121 926.27 179.71 [560.90-

1758.65] 

Inverse efficiency 

(RT/accuracy)a 

121 1006.15 221.05 [623.22-

2344.87] 

 

(table continues on next page) 
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 n M SD Range 

Shifting     

WCST (average # items 

needed to switch)b 

119 5.62 4.90 [2-46] 

Updating      

2-back task (accuracy) 121 .75 .06 [.47-.87] 

Metacognition     

General metacognitive knowledge     

General metacognitive 

questionnaire (# correct)c 

121 11.01 2.27 [3-15] 

Metacognitive monitoring d      

In addition task 121 1.88 0.13 [1.44-2.00] 

In multiplication task 121 1.86 0.13 [1.34-2.00] 

Control variables     

Intellectual ability     

Raven’s Standard 

Progressive Matricesc 

121 502.54 151.70 [329.95-

1913.25] 

Motor speed on keyboard     

Motor reaction time task 

Response time 

121 38.72 6.96 [13-54] 

Note. All Response time variables are average response time for the correct responses. a Inverse efficiency scores 

were calculated by dividing the response time by the accuracy; the higher the score, the worse the performance; b 

Score = total number of items needed to switch divided by number of blocks completed; c Number of correct 

answers; d Alignment between children’s metacognitive judgment and the accuracy of their arithmetic answer, i.e. 

correct arithmetic answers yielded a score of 2 if children said they were Correct, 1 if they said I am not sure, and 

0 if they said they were Incorrect; this scale was reversed when the arithmetic answer was incorrect. The higher 

the score, the better the metacognitive monitoring. 

  



A r i t h m e t i c  c o u n t s  o n  | 97 

  

 

 

 

3 

2 Appendix B – All intercorrelations of the administered cross-sectional data in third graders 

Table 3.B1  

Correlation analyses between the administered measures 

      1a 1b 2a 2b 3 4 5 6 7 8 9 10 11 

Arithmetic 

A
d

d
it

io
n
 

1a. Addition 

ACC 
             

1b. Addition 

RT 
             

r -.28 -            

p .002 -            

BF10 11.63 -            

M
u

lt
ip

li
ca

ti
o

n
 

2a. 

Multiplication 

ACC 

             

r .54 -.39 -           

p <.001 <.001 -           

BF10 >100 >100 -           

2b. 

Multiplication 

RT 

             

r -.03 .68 -.35 -          

p .74 <.001 <.001 -          

BF10 0.12 >100 >100 -          

Numerical 

magnitude 

processing 

S
y

m
b

o
li

c 
N

M
P

 

3. Symbolic 

NMP RT 
             

r .07 .46 -.22 .35 -         

p .43 <.001 .02 <.001 -         

BF10 0.16 >100 1.91 >100 -         

Executive 

functions 

In
h

ib
it

io
n
 

4. Flanker task 

IE 
             

r -.12 .09 -.18 .04 .22 -        

p .19 .32 .05 .63 .02 -        

BF10 0.27 0.19 0.82 0.13 1.88 -        

5. Stroop task 

IE 
             

r -.12 .04 -.04 .11 .08 .02 -       

p .18 .67 .64 .24 .41 .83 -       

BF10 0.28 0.13 0.13 0.23 .16 0.12 -       

S
h

if
ti

n
g

 6. WCST              

r .05 -.01 -.15 .13 .15 .12 .05 -      

p .63 .96 .10 .17 .11 .19 .61 -      

BF10 0.13 0.12 0.44 0.29 .42 0.27 0.13 -      

U
p

d
at

in
g
 

7. 2-back task 

ACC 
             

r .10 -.25 .01 -.09 -.09 -.20 .04 -.19 -     

p .30 .006 .95 .30 .34 .03 .65 .04 -     

BF10 0.19 4.62 0.11 0.19 0.18 1.25 0.13 1.02 -     

 

(table continues on next page)  
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      1a 1b 2a 2b 3 4 5 6 7 8 9 10 11 

Meta-

cognition 

G
en

er
al

 

m
et

ac
o

g
n

it
iv

e 

k
n

o
w

le
d

g
e 

8. 

Metacognitive 

questionnaire 

             

r .14 -.31 .14 -.16 -.17 -.01 -.14 .04 .16 -    

p .13 .001 .14 .08 .06 .89 .13 .64 .09 -    

BF10 
0.36 36.27 0.34 0.51 0.62 0.12 0.35 0.13 0.49 -    

T
as

k
-s

p
ec

if
ic

 m
et

ac
o

g
n

it
io

n
 

9. 

Metacognitive 

monitoring - 

Addition 

             

r .48 -.38 .28 -.14 .02 -.07 -.01 .04 .25 .13 -   

p <.001 <.001 .002 .13 .86 .45 .92 .69 .007 .15 -   

BF10 > 100 >100 15.56 0.35 0.12 0.15 .12 0.12 4.26 0.31 -   

10. 

Metacognitive 

monitoring - 

Multiplication 

             

r .37 -.27 .58 -.36 -.04 .01 .02 -.10 .16 .06 .48 -  

p <.001 .003 <.001 <.001 .69 .94 .80 .28 .09 .52 <.001 -  

BF10 >100 8.72 >100 >100 0.12 0.11 .12 0.21 .48 0.14 >100 -  

Control 

Variables 

In
te

ll
ig

en
ce

 

11. Raven              

r .24 -.04 .27 .04 .07 -.26 -.01 .01 .17 -.004 .11 .16 - 

p .007 .63 .003 .64 .42 .004 .92 .89 .07 .97 .24 .08 - 

BF10 4.01 0.13 8.59 0.13 0.16 6.42 0.12 0.12 0.57 0.11 0.23 0.52 - 

M
o

to
r 

sp
ee

d
 

12. Motor 

reaction time 

task RT 

             

r -.16 .31 -.07 .31 .35 .13 -.03 -.02 -.10 -.22 -.26 -.13 .008 

p .08 .001 .43 .001 <.001 .17 .74 .86 .27 .02 .004 .16 .93 

BF10 0.51 36.01 0.16 34.37 >100 0.30 0.12 0.12 0.21 1.99 7.04 0.30 0.11 

Note. ACC = accuracy, RT = response time, NMP = numerical magnitude processing; All correlations with the 

Flanker task incongruent condition are controlled for the performance (IE) on the Flanker baseline condition; All 

correlations with the animal Stroop task incongruent condition are controlled for the performance (IE) on the 

animal Stroop baseline task; All correlations with the numerical magnitude processing task are controlled for 

performance (RT) on the motor speed task, except for the correlations with the inhibition tasks, which are 

controlled for their respective baseline (IE).  
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3 Appendix C – All longitudinal intercorrelations of the administered measures 

Table 3.C1  

Longitudinal correlations between the administered measures 

      T2 

   1a 1b 2a 2b 3 4 5 6 7 8 9 10 11 12 

  T1               

Arithmetic 

A
d

d
it

io
n
 

1a. Addition ACC               

r .47 -.30 .31 -.04 .04 -.10 -.09 .01 .16 .12 .39 .16 .33 -.12 

p <.001 .001 <.001 .66 .63 .26 .32 .88 .07 .21 <.001 .09 <.001 .20 

BF10 >100 26.16 50.37 0.13 0.13 0.22 0.19 0.12 0.56 0.25 >100 0.48 94.35 0.25 

1b. Addition RT               

r -.30 .78 -.31 .54 .32 .05 -.01 .01 -.10 -.19 -.21 -.22 -.01 .33 

p .001 <.001 <.001 <.001 <.001 .60 .91 .95 .28 .03 .02 .02 .95 <.001 

BF10 31.88 >100 49.34 >100 71.90 0.13 0.11 0.12 0.20 1.05 1.75 2.15 0.11 >100 

M
u

lt
ip

li
ca

ti
o

n
 

2a. Multiplication 

ACC               

r .43 -.41 .54 -.25 -.06 .04 .05 -.04 .06 .09 .25 .38 .26 -.24 

p <.001 <.001 <.001 .01 .50 .69 .58 .70 .53 .31 .01 <.001 .004 .01 

BF10 >100 >100 >100 4.34 0.14 0.12 0.13 0.12 0.14 0.19 4.54 >100 7.56 3.46 
2b. Multiplication 

RT               

r -0.02 .48 -0.11 .64 0.22 -.12 .02 -0.09 -0.01 .04 -.03 -.23 .18 .18 

p .79 <.001 0.25 <.001 .02 .21 .85 0.31 .96 .66 .72 .01 .05 .06 

BF10 0.12 >100 0.22 >100 2.13 0.25 0.12 0.19 0.11 0.13 0.12 2.35 0.80 0.70 

Numerical 

magnitude 

processing 

S
y

m
b

o
li

c 
N

M
P

 

3. Symbolic NMP 

RT               

r .12 .41 -.004 .34 .49 .13 .10 .04 -.27 -.32 -.09 -.05 .12 .30 

p .19 <.001 .97 <.001 <.001 .17 .30 .71 .003 <.001 .34 .62 .21 .001 

BF10 0.27 >100 0.11 >100 >100 0.30 0.19 0.12 8.35 49.14 0.18 0.13 0.25 23.37 

Executive 

functions 

In
h

ib
it

io
n
 

4. Flanker task IE               

r -.11 -.01 -.01 -.03 -.05 .59 .17 -.01 -.12 .02 -.10 .01 -0.35 -.01 

p .24 .93 .92 .74 .60 <.001 .07 .94 .20 .83 .29 .90 <.001 .96 

BF10 0.23 0.12 0.12 0.12 0.13 >100 0.59 .12 .26 .12 0.20 0.12 >100 0.11 

5. Stroop task IE               

r -.11 .08 -.14 .04 .10 .31 .25 .05 -.07 .13 -.11 -.13 -.11 -.11 

p .25 .42 .14 .70 .26 .001 .01 .63 .43 .17 .25 .17 .25 .24 

BF10 0.22 0.16 0.33 0.12 0.22 40.19 4.69 0.13 0.16 0.29 0.22 0.29 0.22 0.23 

S
h

if
ti

n
g

 6. WCST               

r .06 -.08 -.15 .04 .07 .12 -.01 .15 -.01 .19 .24 -.02 -.17 .04 

p .55 .39 .11 .64 .48 .22 .90 .10 .90 .05 .01 .80 .07 .69 

BF10 0.14 0.17 0.42 0.13 0.15 0.25 0.12 0.43 0.12 0.84 2.87 0.12 0.56 0.13 

U
p

d
at

in
g
 

7. 2-back task 

ACC               

r .17 -.10 .19 .01 -.04 -.11 .01 .05 .22 .07 .27 .30 .28 -.10 

p .06 .25 .03 .92 .63 .22 .94 .59 .02 .44 .003 .001 .002 .29 

BF10 0.76 0.23 1.27 0.11 0.13 0.24 0.11 0.13 1.95 0.15 10.85 33.92 13.45 0.20 

 

(table continues on next page) 
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 T2 

  
 1a 1b 2a 2b 3 4 5 6 7 8 9 10 11 12 

  
T1               

Meta-

cognition 

G
en

er
al

 m
et

a-

co
g

n
it

iv
e 

k
n

o
w

le
d

g
e 

8. Metacognitive 

questionnaire               

r .01 -.32 .16 -.30 -.17 -.17 -.03 -.11 .19 .37 .03 .07 .01 -.15 

p .94 <.001 .08 .001 .06 .06 .75 .23 .04 <.001 .76 .48 .92 .10 

BF10 0.11 72.89 0.52 32.87 0.65 0.65 0.12 0.24 1.02 >100 0.12 0.15 0.11 0.44 

T
as

k
-s

p
ec

if
ic

 m
et

ac
o

g
n

it
io

n
 

9. Metacognitive 

monitoring - 

Addition               

r .33 -.32 .30 -.16 -.14 -.08 .01 -.12 .09 .06 .51 .36 .11 -.07 

p <.001 <.001 .001 .08 .12 .40 .92 .18 .31 .52 <.001 <.001 .24 .43 

BF10 76.80 62.01 24.36 0.51 0.38 0.16 0.11 0.28 0.19 0.14 >100 >100 0.23 0.16 
10. Metacognitive 

monitoring - 

Multiplication               

r .24 -.31 .40 -.21 -.02 .03 .08 -.02 -.02 .01 .19 .34 .23 -.13 

p .01 <.001 <.001 .02 .82 .75 .37 .85 .85 .91 .04 <.001 .01 .15 

BF10 3.52 47.43 >100 1.55 0.12 0.12 0.17 0.12 0.12 0.11 0.93 >100 2.99 0.32 

Control 

Variables 

In
te

ll
ig

en
ce

 

11. Raven               

r .31 -.08 .30 -.01 .03 -.25 -.11 -.07 .18 .02 .15 .22 .65 .09 

p .001 .37 .001 .94 .71 .01 .25 .46 .05 .82 .09 .02 <.001 .32 

BF10 42.82 0.17 30.74 0.11 0.12 5.64 0.22 0.15 0.76 0.12 0.46 1.88 >100 0.18 

M
o

to
r 

sp
ee

d
 12. Motor reaction 

time task RT               

r -.08 .09 -.13 .14 .14 .14 -.05 .01 -.11 -.06 -.21 -.21 -.07 .25 

p .37 .36 .17 .13 .14 .14 .60 .96 .22 .53 .02 .02 .48 .01 

BF10 0.17 0.17 0.29 0.35 0.34 0.34 0.13 0.12 0.24 0.14 1.50 1.42 0.15 5.10 

Note. ACC = accuracy, RT = response time, NMP = numerical magnitude processing; All correlations with the 

Flanker task incongruent condition are controlled for the performance (IE) on the Flanker baseline condition; All 

correlations with the animal Stroop task incongruent condition are controlled for the performance (IE) on the 

animal Stroop baseline task; All correlations with the numerical magnitude processing task are controlled for 

performance (RT) on the motor speed task, except for the correlations with the inhibition tasks, which are 

controlled for their respective baseline (IE) 
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Chapter 4 

Too anxious to be confident? 

A panel longitudinal study into the interplay of 

metacognition and mathematics anxiety in 

arithmetic achievement. 

 

Abstract 

Both metacognitive monitoring and mathematics anxiety have been identified as associated with or 

predictive of individual differences in arithmetic achievement in primary school children. It is unclear, 

however, how these variables are interrelated and whether their interrelation impacts their respective 

associations with arithmetic achievement. Gaining insight into their interplay is of utmost importance 

for the design of targeted interventions. We used a panel longitudinal design to investigate arithmetic 

achievement, metacognitive monitoring skills and mathematics anxiety in 127 typically developing 7-

8-year-olds (second grade) and followed them up one year later (in third grade). As such, participants 

were in the middle of an important developmental period for arithmetic, as well as metacognitive 

monitoring and mathematics anxiety. Our preregistered analyses showed that metacognitive monitoring 

and mathematics anxiety are correlated and that this association strengthened over development. 

However, this association was mediated by arithmetic achievement. In line with the deficit model of 

mathematics anxiety, our findings indicate an increasingly important role of mathematics anxiety in 

arithmetic achievement and metacognition. Furthermore, our results indicated that the association 

between arithmetic achievement and metacognitive monitoring was unique and specific, without 

mediation or moderation of mathematics anxiety. Arithmetic achievement was found to be a unique, 

powerful predictor over developmental time of both metacognitive monitoring and mathematics anxiety, 

over and above their respective autoregressive effects. These results emphasise the importance of 

arithmetic achievement in the development of mathematics anxiety, metacognitive monitoring and their 

interrelations. 
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Introduction 

Individual differences in mathematical performance have been a frequently investigated topic in the 

existing educational and psychological literature. Most of this research has focused on cognitive skills, 

such as numerical magnitude processing (e.g. Schneider et al., 2017) or working memory (e.g. Peng et 

al., 2016), that underlie these individual differences. There has been, however, much less research on 

more affective and metacognitive variables, which also play a critical role in academic learning and its 

individual differences (e.g. Dowker, 2019c; Schneider, 2010). One such important affective factor is 

mathematics anxiety. An extensive body of research has shown that mathematics anxiety or “a feeling 

of tension and anxiety that interferes with the manipulation of numbers and solving of mathematical 

problems in ordinary life and academic situations” (Richardson & Suinn, 1972, p. 551), is 

systematically found to be moderately negatively related to mathematics performance (e.g. see 

Hembree, 1990; Ma, 1999; Namkung et al., 2019, for meta-analyses) and some studies have specifically 

shown this negative association with arithmetic (e.g. Ashcraft et al., 1998; Harari et al., 2013; Hunt et 

al., 2017; Sorvo et al., 2017). More recently, the metacognitive variable metacognitive monitoring has 

been found to be a unique predictor of individual differences in arithmetic achievement, in addition to 

important other predictors such as symbolic numerical magnitude processing or working memory 

(Bellon et al., 2019; Rinne & Mazzocco, 2014). Metacognitive monitoring is part of the broader concept 

‘metacognition’ – which involves the ability to assess one’s own cognitive knowledge and ability (e.g. 

Vo et al., 2014) and how people monitor and control their cognition on-task (e.g. Bryce et al., 2015). 

Metacognitive monitoring is defined as the subjective self-assessment of how well a cognitive task will 

be/is/has been performed (Morsanyi et al., 2019; Nelson & Narens, 1990).  

Research on mathematics anxiety and metacognitive monitoring has been done in isolation from each 

other, making their interrelation and unique contribution to the development of mathematics unclear. 

Gaining insight into this issue is of utmost importance, as learning mathematics involves a complex 

interplay of diverse processes including cognitive, metacognitive and affective processes (e.g. Carey et 

al., 2016; Dowker, 2019e; Dowker et al., 2016; Hill et al., 2016; Mammarella et al., 2015). Moreover, 

it is likely that metacognitive monitoring and mathematics anxiety are associated to each other, because 

both are linked to thinking about your performance, and because they are both associated to individual 

differences in mathematics. The precise, developmental associations between mathematics anxiety and 

metacognitive monitoring, and whether this interplay influences their respective association with 

mathematical performance, remain unknown. Understanding this complex interplay of associations was 

exactly the aim of the current panel longitudinal study. In the remainder of this introduction, we discuss 

potential ways in which metacognitive monitoring, mathematics anxiety and mathematics performance 

might interact, and we outline the rationale for the current study.  
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One possibility is that mathematics anxiety influences metacognitive monitoring. For example, 

mathematics anxiety might hinder the efficiency of metacognitive monitoring (Morsanyi et al., 2019), 

as anxiety impairs the functioning of the goal-directed attentional system (Morsanyi et al., 2019); see 

the processing efficiency theory: Eysenck & Calvo, 1992; and see the attentional control theory: 

Eysenck et al., 2007). As a result, mathematics anxiety can lead to a biased interpretation of actual 

performance, i.e. an underestimation of success and an overestimation of failure. Yet, this lower 

confidence in one’s own mathematical abilities as a result of math anxiousness (Hembree, 1990), might 

in turn might lead to a weaker tendency for overconfidence, which is observed in the general population 

(e.g. Finn & Metcalfe, 2014; Flavell et al., 1970; Yussen & Levy, 1975) and thus result in better 

calibration of confidence (i.e. lower confidence in lower achievers). On the other hand, mathematics 

anxiety might cause rumination and preoccupying thoughts that consume cognitive resources (e.g. 

Ashcraft et al., 1998; Eysenck & Calvo, 1992) that could otherwise be used for metacognitive 

monitoring. Mathematics anxiety might also result in a higher likelihood of rushing through or 

premature termination of mathematical tasks or items (Ashcraft & Faust, 1994), without thorough 

metacognitive processing of the task or item. Contrarily, mathematics anxiety might lead to exaggerated 

error monitoring, in which math anxious children may compensate for anxiety-related processing 

inefficiencies through increased cognitive effort. For example, they might engage in more stringent 

monitoring processes, such as double-checking answers (Morsanyi et al., 2019; Moser et al., 2013).  

Another possibility is that metacognitive monitoring influences the development of mathematics 

anxiety. For example, with increasing experience in mathematics, the individual differences in 

mathematics achievement between children and their peers might become more apparent. When children 

become more aware of these individual differences in achievement, i.e. as a consequent of their 

developing metacognitive skills, this might increase feelings of pressure and anxiety, thereby 

strengthening the relation between metacognition and mathematics anxiety. Moreover, repeated 

experiences of failure in mathematics together with a growing awareness of this failure might lead to 

math anxiousness. For example, Tobias (1986) stated that poor performance is a function of the 

acquisition deficit and the observed elevation in anxiety is attributable to student’s metacognitive 

awareness of their incomplete learning. Alternatively, when previously math anxious children who 

perform well become more aware of their own good performance, they might become less math anxious. 

Although several hypotheses on the interplay between metacognitive monitoring and mathematics 

anxiety as well as their association with achievement are possible, this question has not been rigorously, 

empirically tested. The existing literature offers some suggestions as cross-sectional associations have 

been observed between test anxiety and metacognitive skilfulness in secondary school students 

(Veenman et al., 2000), between mathematics anxiety and metacognition in Chinese 10-year-olds and 

Turkish 12-year-olds word problem solving (Lai et al., 2015; Özcan & Gümüs, 2019), in university 

students in arithmetic (Legg & Locker, 2009) and in their general mathematics achievement (Erickson 



106 | C h a p t e r  4  

 

 

4 

& Heit, 2015). However, in view of the observation that the associations between metacognitive 

monitoring and mathematics achievement (e.g. Bellon et al., 2019), and between mathematics anxiety 

and mathematics achievement (e.g. Krinzinger et al., 2009; Ma & Kishor, 1997; Maloney & Beilock, 

2012; Ramirez et al., 2013, 2016; Vukovic et al., 2013) are already observed in the early grades of 

primary school, it is critical to investigate the interplay of these variables at a much earlier age than in 

the abovementioned studies. To date, it remains unclear how metacognitive monitoring and mathematics 

anxiety are related to each other and to mathematical achievement in early primary school children. 

Even more critical, none of the abovementioned studies has collected longitudinal data, which makes 

making claims on the developmental dynamics of the associations problematic. 

The current study will use a longitudinal panel design to thoroughly investigate the associations 

between metacognitive monitoring, mathematics anxiety and arithmetic achievement. Looking into this 

question in young primary school children is of utmost importance, as metacognitive monitoring skills 

are rapidly developing in this age range and (early signs of) mathematics anxiety emerge, while at the 

same time children’s acquisition of arithmetic is rapidly developing at this age and constitutes a crucial 

building block for later  development in more complex mathematical abilities (e.g. Kilpatrick et al., 

2001). More specifically, critical developments in metacognitive monitoring, e.g. an increase in its 

accuracy, are observed during middle childhood (e.g. Ghetti, 2008; Lyons & Ghetti, 2010; Schneider, 

2008, 2010; Schneider & Lockl, 2008; Schneider & Löffler, 2016). Over second and third grade, the 7-

to-9 year-olds typically intensify their skills in addition and subtraction – which they learned in first 

grade. They are introduced to the multiplication tables and get intensive training with a focus on rote 

memorization of these arithmetic facts. Lastly, mathematics anxiety was found to develop at an early 

age (e.g. 5-6 years; Maloney & Beilock, 2012; Ramirez et al., 2016; Skemp, 1986; Wu et al., 2012) and 

has been linked to a child’s first experiences to mathematics and to the use of rote memorization (e.g. 

Rossnan, 2006). These first years of formal mathematics instruction are thus of crucial importance in 

the development of mathematics anxiety. Because of this rapid and essential development of these three 

variables, it is critical to investigate the interrelations between arithmetic achievement, metacognitive 

monitoring and mathematics anxiety at this stage of development. Therefore, we specifically recruited 

second graders (7-8 year-olds) and followed them up one year later in third grade (8-9 year-olds).  

To the best of our knowledge, the present study is the first to use a longitudinal panel design to 

understand the developmental dynamics between arithmetic achievement, metacognitive monitoring 

and mathematics anxiety. Additionally, such a longitudinal panel design allows us to gain further insight 

into these interrelations through the use of mediation and/or moderation analyses, which are difficult on 

the basis of cross-sectional data alone (e.g. Maxwell et al., 2011; Maxwell & Cole, 2007; Selig & 

Preacher, 2009). Mediation analyses investigate the mechanisms by which an effect operates, namely 

whether a variable’s effect on an outcome variable can be partitioned into direct and indirect (via a 

mediator variable) effects. Mediation analysis thus answers the question of how the effect occurs (Hayes, 
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2018): Is the effect of metacognitive monitoring on arithmetic achievement a direct effect, or is this 

effect driven by the association of metacognitive monitoring with mathematics anxiety, which in turn is 

associated to arithmetic achievement? For example, Özcan and Gümüs (2019) found in seventh grade 

Turkish students that metacognitive experience mediated the effect of mathematics anxiety on problem 

solving. It remains to be determined whether this can also be observed at an earlier developmental stage. 

Moderation analyses, on the other hand, investigate the boundary conditions of an effect, namely 

whether a variable (i.e. the moderating variable) influences or is related to the size of one variable’s 

effect on another. Moderation analysis thus answers the question of when the effect occurs (Hayes, 

2018): Is there only an effect of metacognitive monitoring on arithmetic achievement for low math 

anxious children or is the effect present across the entire distribution of achievement? Legg and Locker 

(2009), for example, found that metacognition moderated the relation between mathematics anxiety and 

arithmetic performance in adults, predicting that performance would decrease as anxiety increased, 

except at high metacognition levels. 

1 The current study 

The current study is the first to simultaneously consider metacognitive monitoring, mathematics 

anxiety and arithmetic achievement in young primary school children. We investigated this issue with a 

longitudinal panel design, which allowed us to go beyond the traditional correlational analyses and 

regression models with mediation and moderation models. This design made it possible to thoroughly 

investigate the important outstanding conundrum on the developmental dynamics of arithmetic 

achievement, metacognitive monitoring and mathematics anxiety in young primary school children, 

which is critical to develop effective educational interventions. Our study was preregistered on the Open 

Science Framework (OSF; https://osf.io/4xgh9/?view_only=deac4754b67b4a30a98003680b3f9536). 

The participants of this study were part of a larger longitudinal project on executive functions and 

metacognition in arithmetic achievement, of which some data of the first data point has already been 

published (Bellon et al., 2019). Importantly, no data on mathematics anxiety were analysed or reported 

before. 
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Method 

1 Participants 

Participants were 127 second graders (64 girls; Mage = 7 years 11 months, SD = 4 months, range = 7 

years 4 months to 8 years 5 months) at the first time point, and 121 of them were followed up one year 

later in third grade (63 girls; Mage = 8 years 8 months, SD = 3 months, range = 8 years 2 months to 9 

years 2 months). They were all typically developing children from Flanders (Belgium) who had no 

diagnosis of a developmental disorder and had dominantly middle-to-high socioeconomic background. 

For every participant, written informed parental consent was obtained. The study was approved by the 

Social and Societal Ethics Committee of the KU Leuven. 

2 Procedure 

At both time points, all children participated in three test sessions, which took place at their own 

school during regular school hours. All children completed the tasks in the same order: Firstly, an 

individual session including the arithmetic achievement tasks and a task-specific metacognitive 

monitoring measure within the arithmetic tasks. Secondly, a session in small groups of five children 

containing cognitive computer tasks. Lastly, a group-administered session in the classroom containing 

the evaluation of arithmetic achievement, general metacognitive knowledge, mathematics anxiety and 

intellectual ability. The full cognitive testing battery is posted on the OSF page of this project. Below 

we describe the key variables and control variables for our preregistered research questions of the current 

study. 

3 Materials  

Materials consisted of standardized tests, paper-and-pencil tasks, and computer tasks designed with 

E-prime 2.0 (Schneider et al., 2002).  

3.1 Arithmetic 

Arithmetic skills were assessed with a custom computerized task and a standardized achievement 

test (i.e. Tempo Test Arithmetic; de Vos, 1992). 

The custom computerized task was the same as in Bellon et al. (2019). A single-digit addition and a 

single-digit multiplication production task were administered, with 64 trials per operation. Children were 

presented with the item for 2000 ms and afterwards, a black screen appeared until response. The children 

were asked to answer verbally and as quickly and accurately as possible. Response times (RTs) and 

answers were registered. Each task was pseudo-randomly divided into two blocks and during the second 

block of each arithmetic task, a metacognitive monitoring measure was added to the task (see below). 

Performance measures were average RT for correct answers and accuracy of the answers, which were 
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calculated for both tasks together, resulting in one average arithmetic RT and average arithmetic 

accuracy score per child. 

Arithmetic fluency was assessed by the Tempo Test Arithmetic (TTA; de Vos, 1992); a standardized 

pen-and-paper achievement test of arithmetical fluency. This achievement test comprises five columns 

of arithmetic items (one column per operation and a mixed column), each increasing in difficulty. 

Participants got one minute per column to provide as many correct answers as possible. The performance 

measure was the total number of correctly solved items within the given time (i.e. total score over the 

five columns). 

3.2 Metacognitive monitoring 

In the second block of the computerized arithmetic tasks (n = 32 per operation), a metacognitive 

monitoring measure was added to the items. Children had to report their judgment on the accuracy of 

their answer to the arithmetic item on a trial-by-trial basis (e.g. Bellon et al., 2019, Rinne & Mazzocco, 

2014). More specifically, after giving their answer to the arithmetic problem, children had to indicate if 

they thought their arithmetic answer was Correct, Incorrect, or if they Did not know. We used emoticons 

in combination with the options (e.g.  and Correct) to make the task more attractive and feasible for 

children (see Figure 4.1). 

 

Figure 4.1. Example of metacognitive monitoring question after arithmetic item. 

 

Metacognitive monitoring skills were operationalised as calibration of this judgment (i.e. the 

alignment between one’s judgment in the accuracy of their answer to a problem and the actual accuracy 

of the answer). A calibration score of 2 was obtained if their metacognitive judgment corresponded to 

their actual performance: metacognitively judged as Correct and indeed correct arithmetic answer; 

metacognitively judged as Incorrect and indeed incorrect arithmetic answer. A calibration score of 0 
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was obtained if children’s metacognitive judgement did not correspond to their actual performance: 

metacognitively judged as Correct and in fact incorrect arithmetic answer; metacognitively judged as 

Incorrect and in fact correct arithmetic answer. A calibration score of 1 was obtained if children 

indicated they Did not know. The metacognitive monitoring score per child was the mean of all 

calibration scores (i.e. calibration score per arithmetic item) over both arithmetic tasks (n = 64). The 

higher the calibration scores, the better the metacognitive monitoring skills. To familiarize the children 

with the task, six practice items were presented.  

3.3 Mathematics anxiety 

To measure mathematics anxiety, we adapted the mathematics anxiety questionnaire developed by 

Suinn and Edwards (1982). In this questionnaire, 15 situations involving mathematics in daily life (e.g. 

How anxious are you / would you be to do homework for math class?) were described. Children had to 

indicate which of five emoticons best represented their feeling within that situation (i.e. ranging from 

“not at all anxious/stressed” with corresponding emoticon  to “very anxious/stressed” with 

corresponding emoticon ). The researcher read the situations aloud one by one. Children were given 

a response form with the emoticons, such that they could follow each item and indicate their answer. 

The more anxious the children indicated they were, the higher the score (e.g. ranging from 1 point for 

“not at all anxious/stressed” to 5 points for “very anxious/stressed”). The performance measure was the 

total number of points over the 15 situations. 

3.4 Intellectual ability 

Intellectual ability was assessed through Raven’s Standard Progressive Matrices (Raven et al., 1992). 

Children were given 60 multiple-choice items in which they had to complete a pattern. The performance 

measure was the number of correctly solved patterns.  

4 Data analysis 

A comprehensive analysis plan was preregistered on the OSF page of this project. We ran frequentist 

analyses using both uni- and multivariate techniques, as well as Bayesian analyses, using Bayes factors. 

Although Bayes factors provide a continuous measure of degree of evidence, we interpreted them 

according to some conventional approximate guidelines for interpretation (Andraszewicz et al., 2015, 

for a classification scheme): BF10 = 1 provides no evidence either way, BF10 > 1 anecdotal, BF10 > 3 

moderate, BF10 > 10 strong, BF10 > 30 very strong and BF10 >100 decisive evidence for the alternative 

hypothesis. 

To answer our research questions, we used correlational and regression analyses. For the Bayesian 

analyses, we used a default prior provided by the statistical program JASP (JASP, 2019): a Cauchy prior 

distribution centred at zero; prior width set to 1 for Pearson correlations and to .354 for the linear 

regression analyses. For every predictor in each regression model, a BFinclusion was calculated. This is a 
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Bayes factor for including the predictor averaged across the models under consideration (i.e. the models 

with versus the models without the predictor of interest). 

Because the current study had a longitudinal panel design, it was possible to additionally perform 

both mediation and moderation analyses to investigate direct and indirect effects in the presented 

associations, and to investigate whether a certain variable influences or is related to the size of one 

variable’s effect on another variable. We used the PROCESS computational toolbox for SPSS (Hayes, 

2018) using Model 4 (‘simple mediation model’) for all mediation analyses, and Model 1 (‘simple 

moderation model’) for all moderation analyses. The strength and significance of the mediation models 

were tested using the bootstrapping method with 10 000 iterations (Preacher et al., 2007). 

Results 

1 Descriptive statistics 

The descriptive statistics of all key measures are presented in Table 4.1.  

Table 4.1  

Descriptive statistics of the key variables 

 n M SD Range 

Arithmetic     

Custom task      

Accuracy     

T1 127 .89 .08 [.54-1.00] 

T2 121 .95 .05 [.77-1.00] 

Response time (ms)     

T1 127 5431.89 2554.31 
[2242.60-

20115.33] 

T2 121 3459.73 1304.24 
[1520.84-

10447.26] 

Standardized task a     

T1 126 67.68 16.51 [33-108] 

T2 121 85.51 19.18 [48-127] 

Metacognition     

Metacognitive monitoring b     

T1 127 1.79 0.14 [1.06-2.00] 

T2 121 1.87 0.11 [1.50-2.00] 

Mathematics anxiety     

T1 127 28.82 9.72 [15-59] 

T2 121 26.91 8.22 [15-54] 

Control     

Intellectual ability     

Raven a     

T1 127 34.50 8.35 [10-50] 

T2 121 38.72 6.96 [13-54] 
Note. T1 = time point 1 (Grade 2); T2 = time point 2 (Grade 3). a Number of correct answers; b Alignment between 

children’s metacognitive judgment and the accuracy of their arithmetic answer. 
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In the analyses reported below, the standardized achievement test of arithmetic (i.e. TTA) was used 

as performance measure for arithmetic achievement. This was done to have an assessment of arithmetic 

that was independent of the task in which metacognitive monitoring was measured. Moreover, the 

standardized achievement test was the most ecologically valid measure, assessing arithmetic 

achievement as it is usually assessed in the classroom. As a validity check, we verified whether the 

performance measures of the custom tasks were correlated with the widely-used standardized arithmetic 

achievement test that we utilized (i.e. TTA). This was the case for both the accuracy (T1: r = .43, p < .001, 

BF10 > 100; T2 : r = .47, p = , BF10 > 100) and the response time for correct answers  

(T1: r = -.63 , p < .001 , BF10 > 100; T2 : r = -.73 , p < .001, BF10 > 100). 

There was a significant increase in performance between the two time points in arithmetic 

achievement (t(119) = -18.74, p < .001, BF10 > 100), in metacognitive monitoring (t(120) = -6.30, 

p < .001, BF10 > 100) and in the raw scores of the intellectual ability measure (t(120) = -7.10, p < .001, 

BF10 > 100), but not in mathematics anxiety (t(120) = 1.80, p = .07, BF10 = 0.48). 

1.1 Correlational analyses 

Pearson correlation coefficients of the associations between arithmetic achievement, metacognitive 

monitoring and mathematics anxiety are presented in Table 4.2. A full correlation matrix that includes 

all variables reported on here is included in Appendix A. As correlations of our key variables with 

intellectual ability were not significant/supported, intellectual ability was not considered further. 

Arithmetic achievement was significantly correlated with metacognitive monitoring at both time 

points and across time, with Bayes factors indicating decisive evidence in favour of all these 

associations. Arithmetic achievement was significantly correlated with mathematics anxiety at both time 

points and across time. An inspection of the Bayes factors provided a more nuanced interpretation of 

these associations, indicating decisive evidence for all associations with mathematics anxiety at T2. The 

Bayes factors indicated moderate evidence in favour of the association between arithmetic achievement 

T1 and mathematics anxiety T1 and only anecdotal evidence for the association between mathematics 

anxiety T1 and arithmetic achievement T2. 

The association between metacognitive monitoring and mathematics anxiety was significant at both 

time points, yet the Bayes factors only supported the association at T2, while at T1 the evidence of this 

associations was only anecdotal. Across time points, the results show that mathematics anxiety at T1 was 

significantly correlated with metacognitive monitoring at T2, with a Bayes factor indicating there was 

moderate evidence in favour of the association. The association of metacognitive monitoring T1 with 

mathematics anxiety T2 was not significant, with a Bayes Factor indicating moderate evidence in favour 

of the null hypothesis. 
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Table 4.2   

Correlation analyses of arithmetic achievement, metacognitive monitoring and mathematics anxiety at 

both time points 

 Arithmetic achievement Metacognitive monitoring Mathematics 

anxiety 

 T1 T2 T1 T2 T1 

Arithmetic 

achievement 

     

T2      

r .85 -    

p < .001 -    

BF10 >100 -    

Metacognitive 

monitoring 

     

T1      

r .41 .35 -   

p <.001 <.001 -   

BF10 >100 >100 -   

T2      

r .38 .36 .45 -  

p <.001 <.001 <.001 -  

BF10 >100 >100 >100 -  

Mathematics 

anxiety 

     

T1      

r -.25 -.20 -.21 -.24 - 

p .004 .03 .02 .008 - 

BF10 6.20 1.25 1.65 3.82 - 

T2      

r -.35 -.42 -.17 -.40 .35 

p <.001 <.001 .07 <.001 <.001 

BF10 >100 >100 0.58 >100 >100 
Note. T1 = time point 1 (Grade 2); T2 = time point 2 (Grade 3). 

1.2 Regression analyses 

Regression analyses were used to predict arithmetic achievement, metacognitive monitoring 

performance, and mathematics anxiety in third grade (T2), based on arithmetic achievement, 

metacognitive monitoring performance, and mathematics anxiety in second grade (T1). Only variables 

that were significantly correlated with the outcome measure at the level of zero-order correlations were 

considered in the regression models. Firstly, arithmetic achievement at T2 was predicted with multiple 

regression analyses using the autoregressor (arithmetic achievement T1) and metacognitive monitoring 

T1 (Table 4.3a) and mathematics anxiety T1 (Table 4.3b); secondly, metacognitive monitoring T2 was 

predicted with multiple regression analyses using the autoregressor (metacognitive monitoring T1), and 

arithmetic achievement at T1 (Table 4.3c), and mathematics anxiety T1 (Table 4.3d) and both arithmetic 

achievement T1 and mathematics anxiety T1 simultaneously (Table 4.3e); lastly, mathematics anxiety 

T2 was predicted with multiple regression analyses using the autoregressor (mathematics anxiety T1) 

and arithmetic achievement T1 (Table 4.3f). 
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Table 4.3   

Regression analyses of arithmetic achievement T2, metacognitive monitoring T2 and 

mathematics anxiety T2 

 Arithmetic achievement T2 

 β t p BFinclusion 

(a) Adjusted R² = .71     

Autoregressor – Arithmetic achievement T1 .84 15.63 <.001 >100 

Metacognitive monitoring T1 .02 0.29 .77 0.15 

     

(b) Adjusted R² = .71     

Autoregressor – Arithmetic achievement T1 .80 16.69 <.001 >100 

Mathematics anxiety T1 .01 0.10 .92 0.14 

 

 Metacognitive monitoring T2 

 β t p BFinclusion 

(c) Adjusted R² = .24     

Autoregressor - Metacognitive monitoring T1 .37 4.24 <.001 >100 

Arithmetic achievement T1 .23 2.61 .01 8.35 

     

(d) Adjusted R² = .22     

Autoregressor - Metacognitive monitoring T1 .42 5.11 <.001 >100 

Mathematics anxiety T1 -.16 -1.89 .06 1.93 

     

(e) Adjusted R² = .25     

Autoregressor - Metacognitive monitoring T1 .35 4.02 <.001 >100 

Arithmetic achievement T1 .21 2.38 .02 5.86 

Mathematics anxiety T1 -.10 -1.15 .25 1.07 

 

 Mathematics anxiety T2 

 β t p BFinclusion 

(f) Adjusted R² = .19     

Autoregressor - Mathematics anxiety T1 .28 3.33 .001 59.70 

Arithmetic achievement T1 -.28 -3.28 .001 52.75 
Note. T1 = time point 1 (Grade 2); T2 = time point 2 (Grade 3). 

All outcome measures (i.e. arithmetic achievement, metacognitive monitoring, and mathematics 

anxiety at T2) were significantly predicted by their autoregressor on top of the other considered variables. 

Arithmetic achievement was not significantly predicted by either metacognitive monitoring or 

mathematics anxiety on top of its autoregressor, with Bayes factors indicating moderate to strong 

evidence for the null hypotheses.  

Metacognitive monitoring T2 was significantly predicted by arithmetic achievement T1, in addition to 

both the autoregressor and to mathematics anxiety T1, with Bayes factors indicating moderate evidence 

for the predictive value of arithmetic achievement T1. Mathematics anxiety T1, on the other hand did not 

significantly predict metacognitive monitoring T2 on top of the autoregressor, with Bayes factors 

indicating only anecdotal evidence for the influence of mathematics anxiety in predicting metacognitive 

monitoring.  
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Mathematics anxiety T2 was significantly predicted by arithmetic achievement T1, in addition to the 

autoregressor, with a Bayes Factor indicating very strong evidence in favour of the predictive value of 

arithmetic achievement T1. Metacognitive monitoring T1 was not significantly related to mathematics 

anxiety T2, for which reason it was not included as a predictor variable in the regression analyses.  

1.2.1 Mediation analyses. 

These regression analyses might hint to underlying interrelations between arithmetic achievement, 

metacognition and mathematics anxiety that may explain some variance in their respective bivariate 

associations (e.g. Is the association between arithmetic achievement and metacognitive monitoring 

influenced by mathematics anxiety?). Yet the abovementioned regression analyses cannot provide 

evidence for those hypotheses. Therefore, we performed mediation analyses to investigate whether the 

associations that were found, were either direct effects of one variable on another, or whether the 

associations were mediated via a third variable. For example, we investigated whether metacognitive 

monitoring directly predicted arithmetic achievement, or whether its predictive power was indirect, via 

mathematics anxiety. As preregistered, only associations that were found significant/supported in the 

zero-order correlational analyses were considered for mediation and moderation analyses.  

All mediation analyses are presented in Figure 4.2. We first investigated whether mathematics 

anxiety mediated the association between arithmetic achievement and metacognitive monitoring. 

Mathematics anxiety T1 did not mediate the relation between metacognitive monitoring T1 as antecedent 

and arithmetic achievement T2 as consequent variable (bootstrapped 95% confidence interval of indirect 

path [-1.43; 10.47]; Figure 4.2A), nor did mathematics anxiety T1 mediate the relation between 

arithmetic achievement T1 as antecedent and metacognitive monitoring T2 as consequent variable 

(bootstrapped 95% confidence interval of indirect path [0.000; 0.0007]; Figure 4.2B). Both direct effects 

(i.e. direct effect of metacognitive monitoring on arithmetic achievement and direct effect of arithmetic 

achievement on metacognitive monitoring) were significant.  

Secondly, we tested whether metacognitive monitoring mediated the association between arithmetic 

achievement and mathematics anxiety. Metacognitive monitoring T1 mediated the relation between 

mathematics anxiety T1 as antecedent variable and arithmetic achievement T2 as consequent 

(bootstrapped 95% confidence interval of indirect path [-.30; -.02]; Figure 4.2C). The direct effect of 

mathematics anxiety on arithmetic achievement was not significant. On the other hand, metacognitive 

monitoring T1 did not mediate the relation between arithmetic achievement T1 as antecedent variable and 

mathematics anxiety T2 as consequent (bootstrapped 95% confidence interval of indirect path [-0.04; 

0.03]; Figure 4.2D). The direct effect of arithmetic achievement on mathematics anxiety was significant.  

Lastly, we tested whether arithmetic achievement mediated the association between metacognitive 

monitoring and mathematics anxiety. A mediation analysis showed that arithmetic achievement T1 

mediated the relation between mathematics anxiety T1 as antecedent variable and metacognitive 
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monitoring T2 as consequent (bootstrapped 95% confidence interval of indirect path [-0.0020; -0.0003]; 

Figure 4.2E). The direct effect of mathematics anxiety on metacognition was not significant. As there 

was no significant association between mathematics anxiety T2 and metacognitive monitoring T1, no 

mediation analyses were performed on this association. 

 

 

Figure 4.2. Mediation analyses between arithmetic achievement, metacognitive monitoring and 

mathematics anxiety. Antecedent variables and mediators (i.e. in box with dashed lines) are measured 

at T1. Consequent variables (i.e. in box with solid line) are measured at T2. 

 

1.2.2 Moderation analyses. 

While through mediation analyses, we investigated whether the found effects were direct or indirect 

within the entire population, we used moderation analyses to explore whether the (size of the) effect of 

one variable on another is dependent on a third variable. Namely, we wondered when or under what 

circumstances one variable exerts an effect on another. For example, we studied whether the relationship 

between arithmetic achievement and metacognitive monitoring might be different at different levels of 

mathematics anxiety. 

Using moderation analyses with arithmetic achievement (T2) as dependent variable, metacognitive 

monitoring T1 did not moderate the effect of mathematics anxiety T1, nor did mathematics anxiety T1 

moderate the effect of metacognitive monitoring T1. The interaction between metacognitive monitoring 

T1 and mathematics anxiety T1 was not significant (β = -2.14, p = .11). 
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Using moderation analyses with metacognitive monitoring (T2) as dependent variable, arithmetic 

achievement T1 did not moderate the effect of mathematics anxiety T1, nor did mathematics anxiety T1 

moderate the effect of arithmetic achievement T1. The interaction between mathematics anxiety T1 and 

arithmetic achievement T1 was not significant (β = -0.00, p = .80). 

Using moderation analyses with mathematics anxiety (T2) as dependent variable, arithmetic 

achievement T1 did not moderate the effect of metacognitive monitoring T1, nor did metacognitive 

monitoring T1 moderate the effect of arithmetic achievement T1. The interaction between metacognitive 

monitoring T1 and arithmetic achievement T1 was not significant (β = -0.12, p = .67). 

 

Discussion 

Throughout the literature on arithmetic achievement, metacognitive monitoring and mathematics 

anxiety have been identified as associated with arithmetic achievement in children (e.g. Bellon et al., 

2019; Hembree, 1990; Rinne & Mazzocco, 2014; Shrager & Siegler, 1998). As metacognitive 

monitoring and mathematics anxiety have been studied in relative isolation, to date, it is unclear whether 

or not considering both variables simultaneously has an influence on their associations with arithmetic 

achievement. Some indications on the interplay between these variables can be found in the existing 

literature on adults (e.g. Erickson & Heit, 2015; Legg & Locker, 2009), yet, studies on this specific 

interplay in children are scarce. Importantly, the developmental dynamics between these variables have 

never been studied. The current study is the first to tackle this important outstanding issue in young 

primary school children by including metacognitive monitoring and mathematics anxiety 

simultaneously to investigate their interrelation and interplay in arithmetic achievement in second to 

third grade, using a longitudinal panel design. This design allowed us to thoroughly investigate the 

developmental dynamics and interrelations of arithmetic achievement, metacognitive monitoring and 

mathematics anxiety in early primary school, a crucial developmental period for arithmetic achievement, 

as well as metacognitive monitoring and mathematics anxiety. 

The results of this study provide essential new insights into this issue, while on the other hand 

replicating some important results from the existing literature in the isolated fields of metacognitive 

monitoring and mathematics anxiety. As an initial step, the intercorrelations between arithmetic 

achievement, metacognitive monitoring and mathematics anxiety were studied longitudinally. Firstly, 

we found significant and supported associations between the standardized arithmetic achievement test 

and metacognitive monitoring at both time points (in line with Bellon et al., 2019; Rinne & Mazzocco, 

2014). Importantly, this study is the first to longitudinally confirm this relation across time points. 

Secondly, significant and supported associations between arithmetic achievement and mathematics 

anxiety were found on both time points, and across time, in line with the meta-analytic results of 

Hembree (1990), Ma (1999) and Namkung et al. (2019), who found associations of a similar size (i.e. 
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r = [-.27 – -.34]). Going beyond the existing body of evidence, the current study is the first to show that 

metacognitive monitoring and mathematics anxiety are associated at different time points and across 

time in second and third grade primary school children.  

Due to its longitudinal panel design, the current study was able to provide empirical evidence on the 

developmental dynamics of arithmetic achievement, metacognitive monitoring and mathematics anxiety 

in young primary school children and to uncover whether underlying interrelations between arithmetic 

achievement, metacognition and mathematics anxiety explain some variance in their respective bivariate 

associations. As such, the current study provided empirical evidence pointing to the direction of the 

association between arithmetic achievement and metacognitive monitoring. The results of the regression 

analyses suggest that the longitudinal association between arithmetic achievement and metacognitive 

monitoring is mostly driven by the influence of arithmetic achievement on metacognitive monitoring 

skills rather than the other way around, as arithmetic achievement was found to be a unique predictor of 

later metacognitive monitoring (over and above its autoregressive effect and mathematics anxiety), 

while on the other hand metacognitive monitoring did not predict later arithmetic achievement on top 

of its autoregressive effect. This longitudinal relation between arithmetic achievement and 

metacognitive monitoring cannot be explained by mathematics anxiety, as we did not observe any 

mediation or moderation effects of mathematics anxiety.  

In line with the existing literature, our results suggest that mathematics anxiety, and its negative 

association with academic achievement, is already present in young primary school children (e.g. 

Maloney & Beilock, 2012; Ramirez et al., 2016; Wu et al., 2012). The Bayes factors in the current study 

provided important insight into the strength of the associations with arithmetic achievement, showing 

that the negative association between arithmetic achievement and mathematics anxiety increases across 

development, a finding that is in line with existing research (e.g. Dowker, 2019e; Dowker et al., 2012, 

2016; Ma & Kishor, 1997; Wood et al., 2012). These changes in the association between arithmetic 

achievement and mathematics anxiety may be the result of the increasing experience of mathematical 

success and failure. Mathematics anxiety may increase in those children whose poor performance results 

in repeated failure experiences, in contrast to children who experience greater success in mathematics 

(Dowker, 2019). As according to behaviouristic models, anxiety emerges as an obligatory response to 

an aversive stimulus (Watson & Rayner, 1920), it is plausible that frequent poor mathematics 

performance leads to negative emotions such as mathematics anxiety (e.g. Krinzinger et al., 2009). 

Another possible underlying mechanism that might be at play in the increased association between 

arithmetic achievement and mathematics anxiety is the metacognitive awareness of one’s own 

performance. Specifically, primary school children develop a better notion of their own performance 

over time and, consequently, the individual differences in arithmetic achievement between themselves 

and their peers might become more apparent. This may increase feelings of pressure and anxiety and 

strengthen the relation between arithmetic achievement and mathematics anxiety. This hypothesis is in 
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line with Tobias (1986), who stated that poor performance is a function of an acquisition deficit and the 

observed elevation in anxiety is attributable to student’s metacognitive awareness of their incomplete 

learning.  

We further tested these associations via regression analyses on the longitudinal data. The results 

showed that while mathematics anxiety did not predict later arithmetic achievement, arithmetic 

achievement uniquely predicted mathematics anxiety on top of its autoregressive effect and without 

mediation or moderation of metacognitive monitoring. These results are in line with the deficit model 

of mathematics anxiety, stating that poor performance leads to higher anxiety about that situation in the 

future (Ma & Xu, 2004; Tobias, 1986). Concerning mathematics anxiety, this means that recollection of 

poor mathematics performance may generate mathematics anxiety (e.g. Carey et al., 2016; Dowker et 

al., 2016; Hembree, 1990; Ma & Xu, 2004; Maloney et al., 2015; Sorvo et al., 2019). On the other hand, 

our study partially confirms the hypothesis made by Tobias (1986) that metacognitive monitoring 

mediates the association between arithmetic achievement and mathematics anxiety. While our results 

indicate a strong, unique predictive power of arithmetic achievement for mathematics anxiety, without 

mediation or moderation by metacognitive monitoring, mathematics anxiety does not directly predict 

arithmetic achievement. Its effect is indirect: the longitudinal predictive power of mathematics anxiety 

on arithmetic achievement is mediated by metacognitive monitoring. This indicates that mathematics 

anxiety is only predictive of arithmetic achievement through metacognitive awareness. This result is in 

line with Lai and colleagues (2015), who found the same mediation process in 10-year-old Chinese 

children in word problem solving, and with Özcan and Gümüs (2019), who found this in 11-12-year-

old Turkish children. Our results go beyond the previous ones by showing this mediation already occurs 

in earlier grades of primary school, and by using longitudinal data that allowed us to more properly 

investigate potential mediation processes. 

The current study shows that the negative association between metacognitive monitoring and 

mathematics anxiety increases over development. This might be due to the age of the participants, as 

both metacognitive monitoring and mathematics anxiety are at a crucial point in development in early 

primary school. On the one hand, metacognitive monitoring accuracy is increasing at this age (e.g. 

Ghetti, 2008; Lyons & Ghetti, 2010; Schneider, 2008, 2010; Schneider & Lockl, 2008; Schneider & 

Löffler, 2016). With children getting better at correctly evaluating their performance, repeated failure in 

arithmetic may have a stronger impact and lead to an increasing association between metacognitive 

monitoring and mathematics anxiety. Moreover, children might become more aware of the individual 

differences in arithmetic achievement between them and their peers and thereby increase feelings of 

pressure and anxiety, which may strengthen the relation between metacognition and mathematics 

anxiety. On the other hand, as mathematics anxiety might develop very early in primary school (e.g. 

Maloney & Beilock, 2012; Ramirez et al., 2013), earlier mathematics anxiety may limit one’s ability to 

correctly monitor their performance later in development and thereby strengthening the association 
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between them (Morsanyi et al., 2019). The results of our longitudinal associations are most in line with 

this last hypothesis, as only the association between mathematics anxiety at T1 and metacognitive 

monitoring at T2 was significant and supported.  

To conscientiously investigate these associations between metacognitive monitoring and 

mathematics anxiety, we also examined whether performance in arithmetic achievement might affect 

this relation between metacognitive monitoring and mathematics anxiety. When early arithmetic 

achievement was included as a predictor on top of mathematics anxiety and the autoregressor of 

metacognitive monitoring, there was no evidence for the predictive power of mathematics anxiety for 

later metacognitive monitoring. This was confirmed by the mediation analyses, which showed that 

across time points, mathematics anxiety did not directly predict metacognitive monitoring, but that this 

relation was mediated via arithmetic achievement. These results suggest that the reason for a correlation 

between metacognitive monitoring and mathematics anxiety across time points is because mathematics 

anxiety is related to arithmetic achievement, which in turn correlates to later metacognitive monitoring 

skills.  

Integrating these different results, a similar pattern of increased associations of mathematics anxiety 

with arithmetic achievement and metacognitive monitoring is observed over development. This might 

suggest an increasingly important role of mathematics anxiety in the development of primary school 

children at different levels of performance, i.e. academic as well as metacognitive performance. It is 

therefore important to make sure early signs of mathematics anxiety are detected or, ideally, that 

mathematics anxiety is prevented. This can be done by, for example, modelling positive attitudes to 

mathematics and avoiding expressing negative attitudes towards children, so that a vicious spiral in 

which mathematics anxiety and difficulties with mathematics reinforce one another is prevented (e.g. 

Dowker et al., 2016). 

The predictive power of arithmetic achievement for metacognitive monitoring as well as 

mathematics anxiety was strong and independent of their autoregressors and, respectively, mathematics 

anxiety and metacognitive monitoring. The same was not true for the predictive power of either 

metacognitive monitoring or mathematics anxiety for arithmetic achievement. It is important to 

acknowledge that the autoregressive effect of arithmetic achievement was very high 

(i.e. r = .85, p < .001), which makes the possibility to explain additional variance in arithmetic 

achievement on top of this autoregressor very difficult. On the other hand, our arithmetic achievement 

measure might already capture individual differences in metacognitive monitoring and mathematics 

anxiety, which are both processes that co-occur with performance. This may have also been reflected in 

the autoregressive effect. To further investigate this possibility, future studies should test the effects of 

interventions targeted at both metacognitive monitoring and mathematics anxiety to explore their impact 

on arithmetic achievement and as such bypass the potential measurement overlap with arithmetic. 
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No moderation effects were found within the associations between arithmetic achievement, 

metacognitive monitoring and mathematics anxiety in primary school children, which indicates that the 

associations that were found were equal across different levels of arithmetic achievement, metacognitive 

monitoring and mathematics anxiety within the entire sample. These results add important insight to the 

existing literature, by contradicting hypotheses saying the association between arithmetic achievement 

and mathematics anxiety might be stronger in highly metacognitive competent children, or hypotheses 

saying the association between metacognitive monitoring and mathematics anxiety might be stronger in 

low arithmetic achievers. Our results are not in line with the study on 56 adults by Legg and Locker 

(2009), who found that metacognition (as measured using a metacognitive inventory assessing planning, 

checking, monitoring and evaluating behaviours) moderated the relation between arithmetic 

achievement and mathematics anxiety, predicting that performance decreased as anxiety increased, 

except at high metacognition levels. These differences in results indicate that the interplay between 

arithmetic achievement, metacognition and mathematics anxiety may be different at different ages, and 

in different operationalisations of metacognition. Future studies should therefore further clarify at what 

ages and for which aspects of metacognition moderation of the association between arithmetic 

achievement and mathematics anxiety occurs.  

A limitation of the current study might be that the mathematics anxiety measure used in the current 

study focusses mainly on the affective dimension of mathematics anxiety (i.e. emotions of fear, 

nervousness and tension with their associated physiological reactions, which occur in the presence of 

numerical stimuli, whether or not there is a threat of failure or evaluation; Wigfield & Meece, 1988). 

Mathematics anxiety indeed consists of two different dimensions (Dowker, 2019e), namely the affective 

and the cognitive dimension. It might be the case that the cognitive dimension (i.e. concerns about how 

one is performing and the fear of failure) is even more highly correlated with performance monitoring 

because of the overlap in ‘thinking about your performance’. However, most research focusing on the 

affective dimension has typically shown a relation between mathematics anxiety and mathematics 

achievement in primary school children (e.g. Vukovic et al., 2013; Wu et al., 2012), while studies 

focusing on the cognitive dimension have tended not to show such an association in young children (e.g. 

Dowker et al., 2012; Krinzinger et al., 2009; Wood et al., 2012). Studies which included both dimensions 

of mathematics anxiety have suggested that performance in young children is related to the affective but 

not the cognitive dimension (e.g. Dowker, 2019; Sorvo et al., 2017). 

Future research should build on this first empirical study into the interrelations between arithmetic 

achievement, metacognition and mathematics anxiety. Such research should further examine the role of 

executive functions within the present intercorrelations, as these executive functions may contribute to 

the correlation between skills at different time points. Indeed, executive functions have been associated 

with mathematics ability (e.g. Bull & Lee, 2014), with mathematics anxiety (e.g. Ashcraft & Kirk, 2001) 

and, mostly on a theoretical level, with metacognitive monitoring (e.g. Roebers & Feurer, 2016). 
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However, the report of the first wave of this longitudinal study (Bellon et al., 2019) revealed a lack of 

associations between executive functions, arithmetic achievement and our current measure of 

metacognitive monitoring, making it rather unlikely that these executive functioning measures would 

have an important impact on the current findings. 

In view of the observation of an association between general anxiety and enhanced amplitude of 

error-related negativity (see Moser et al. 2013 for a meta-analysis) there is a need for brain imaging 

studies to look at the relation of mathematics anxiety with monitoring using EEG, particularly in 

developmental populations. Other possibilities would be to investigate the connectivity between 

prefrontal regions – which are known for their involvement in metacognitive processes (e.g. Fleming & 

Dolan, 2014) – and the amygdala (i.e. mathematics anxiety is associated to hyperactivity in the right 

amygdala regions, which are important for processing negative emotions; Young et al., 2012), or to 

investigate differences in activation patterns between high vs low mathematics anxious children during 

monitoring tasks using fMRI. As most of the existing neuro-imaging studies are on adults, it is important 

to specifically study this association between (mathematics) anxiety and metacognitive monitoring in 

children. 

 

Conclusion 

To conclude, this study further unravels the interplay between arithmetic achievement, metacognitive 

monitoring and mathematics anxiety in early primary school children in second and third grade. The 

current study shows that, while metacognitive monitoring and mathematics anxiety are indeed 

correlated, the association between metacognitive monitoring and arithmetic achievement is a unique, 

specific one, without mediation or moderation of mathematics anxiety. The results of this study also 

clearly indicate that arithmetic achievement in itself is an important, unique predictor of both 

metacognitive monitoring and mathematics anxiety later in development, emphasizing the importance 

of skill development in the development of metacognitive monitoring, mathematics anxiety and their 

interrelations. Strengthening children’s arithmetic achievement through targeted interventions 

potentially increases their metacognitive monitoring and reduces mathematics anxiety, a possibility that 

should be tested in future research. 
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Appendixes 

1 Appendix A – Correlational analyses between the administered measures 

Table 4.A1  

Correlation analyses between the administered measures 

    1a 1b 1c 2 3 4 

 
 

Arithmetic  

ACC 

Arithmetic  

RT 
TTA 

Metacognitive  

monitoring 

Mathematics  

anxiety 

Intellec

tual 

ability 

  T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 

A
ri

th
m

et
ic

 -
 C

u
st

o
m

 t
a

sk
 

1a. Arithmetic ACC            

T2            

r .60 -          

p <.001 -          

BF10 >100 -          

1b. Arithmetic RT            

T1            

r -.21 -.19 -         

p .02 .04 -         

BF10 1.74 0.97 -         

T2            

r -.30 -.34 .72 -        

p .001 <.001 <.001 -        

BF10 18.99 >100 >100 -        

A
ri

th
m

et
ic

 -
 

S
ta

n
d

a
rd

 t
a
sk

 

1c. TTA            

T1            

r .43 .38 -63 -.66 -       

p <.001 <.001 <.001 <.001 -       

BF10 >100 >100 >100 >100 -       

T2            

r .39 .47 -.64 -.34 .85 -      

p <.001 <.001 <.001 <.001 <.001 -      

BF10 >100 >100 >100 >100 >100 -      

M
et

a
co

g
n

it
iv

e 

m
o

n
it

o
ri

n
g
 

2. Metacognitive 

monitoring 
          

 

T1            

r .72 .42 -.27 -.28 .41 .35 -     

p <.001 <.001 .002 .002 <.001 <.001 -     

BF10 >100 >100 12.89 13.19 >100 >100 -     

T2            

r .41 .56 -.21 -.34 .38 .36 .45 -    

p <.001 <.001 .02 <.001 <.001 <.001 <.001 -    

BF10 >100 >100 1.52 >100 >100 >100 >100 -    

 

(table continues on the next page) 
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    1a 1b 1c 2 3 4 

 
 

Arithmetic  

ACC 

Arithmetic  

RT 
TTA 

Metacognitive  

monitoring 

Mathematics  

anxiety 

Intellec

tual 

ability 

  T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 

M
a

th
em

a
ti

cs
 a

n
x
ie

ty
 3. Mathematics 

anxiety 

questionnaire 

          

 

T1            

r -.23 -.17 .16 .31 -.25 -.20 -.21 -.24 -   

p .01 .06 .07 .001 .004 0.3 .02 .01 -   

BF10 2.70 0.69 0.56 40.10 6.20 1.25 1.65 3.82 -   

T2            

r -.22 -.40 .19 .41 -.35 -.42 -.17 -.40 .35 -  

p .02 <.001 .03 <.001 <.001 <.001 .07 <.001 <.001 -  

BF10 2.12 >100 1.05 >100 >100 >100 0.58 >100 >100 -  

C
o
n

tr
o
l 

v
a

ri
a

b
le

 –
 

In
te

ll
ec

tu
a
l 

a
b

il
it

y
 

4. Intellectual 

ability - Raven 
          

 

T1            

r .28 .34 .18 .03 -.01 .02 .13 .22 -.09 -.03 - 

p .001 <.001 .04 .73 .88 .82 .14 .02 .29 .75 - 

BF10 19.07 >100 0.92 0.12 0.11 0.12 0.33 1.86 0.19 0.12 - 

T2            

r .34 .29 .14 .02 -.04 -.002 .20 .16 -.10 -.06 .65 

p <.001 .001 .13 .85 .63 .98 .03 0.9 .27 .53 <.001 

BF10 >100 19.21 0.36 0.12 0.13 0.11 1.27 0.49 0.21 0.14 >100 

Note. ACC = accuracy; RT = response time for the correct answers. 
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The content of this chapter has been published as:  

Bellon, E., Fias, W., & De Smedt, B. (2020). Metacognition across domains: Is the association between 

arithmetic and metacognitive monitoring domain-specific? PLOS ONE. 15(3), e0229932. doi: 

10.1371/journal.pone.0229932 
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Chapter 5 

Metacognition across domains. 

Is the association between arithmetic and 

metacognitive monitoring domain-specific? 

 

Abstract 

Metacognitive monitoring is a critical predictor of arithmetic in primary school. One outstanding 

question is whether this metacognitive monitoring is domain-specific or whether it reflects a more 

general performance monitoring process. To answer this conundrum, we investigated metacognitive 

monitoring in two related, yet distinct academic domains: arithmetic and spelling. This allowed us to 

investigate whether monitoring in one domain correlated with monitoring in the other domain, and 

whether monitoring in one domain was predictive of performance in the other, and vice versa. 

Participants were 147 typically developing 8-9-year-old children (Study 1) and 77 typically developing 

7-8-year-old children (Study 2), who were in the middle of an important developmental period for both 

metacognitive monitoring and academic skills. Pre-registered analyses revealed that within-domain 

metacognitive monitoring was an important predictor of arithmetic and spelling at both ages. In 8-9-

year-olds the metacognitive monitoring measures in different academic domains were predictive of each 

other, even after taking into account academic performance in these domains. Monitoring in arithmetic 

was an important predictor of spelling performance, even when arithmetic performance was controlled 

for. Likewise, monitoring in spelling was an important predictor of arithmetic performance, even when 

spelling performance was controlled for. In 7-8-year-olds metacognitive monitoring was domain-

specific, with neither correlations between the monitoring measures, nor correlations between 

monitoring in one domain and performance in the other. Taken together, these findings indicate that 

more domain-general metacognitive monitoring processes emerge over the ages from 7 to 9.  
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Introduction 

“Learn from your mistakes” is an old saying that (grand)parents teach their children. This goes back 

to the premise that making mistakes is associated with learning. Noticing your mistakes is an example 

of monitoring your cognition. This monitoring of cognition is a facet of metacognition, a concept first 

introduced by Flavell (1979). One critical component of metacognition is procedural metacognition. 

This is a self-reflecting, higher-order cognitive process, which indicates how people monitor and control 

their cognition during ongoing cognitive processes (Flavell, 1999; Nelson & Narens, 1990). 

Metacognitive monitoring is an important aspect of procedural metacognition and is defined as the 

subjective self-assessment of how well a cognitive task will be/is/has been performed (Morsanyi et al., 

2019; Nelson & Narens, 1990). 

Two recent studies found evidence for metacognitive monitoring as an important predictor of 

arithmetic performance (Bellon et al., 2019; Rinne & Mazzocco, 2014). To determine the role of 

metacognitive monitoring, these authors asked children on a trial-by-trial basis to report their judgement 

of the accuracy of their answers during an arithmetic task. Both studies found that successful appraisal 

of the accuracy of one’s arithmetic judgement is a powerful predictor of arithmetic performance in 

primary school children. To date, however, it is unclear whether the results regarding the strength of the 

role of metacognitive monitoring in arithmetic are specific to the arithmetic domain, or whether they are 

reflective of a more general metacognitive monitoring process in academic performance; an outstanding 

question on which this study will focus. 

Metacognition has been regarded as a fundamental skill influencing cognitive performance and 

learning in domains as diverse as arithmetic, memory, reading, perception, and many others (e.g. 

Annevirta et al., 2007; Block & Peskowitz, 1990; Efklides & Misailidi, 2010; Freeman et al., 2017; 

Kuhn, 2000; Lyons & Ghetti, 2013; Özsoy, 2011; Rinne & Mazzocco, 2014; Schneider, 1998; Schneider 

& Artelt, 2010; Schraw et al., 2006; Veenman et al., 2006, 2004). The importance of metacognition that 

was found in existing research in different (cognitive) domains is not surprising, as metacognitive 

aspects, such as knowing the limits of your own knowledge and being able to regulate that knowledge, 

are essential components of self-regulated and successful learning (Schraw et al., 2006), enabling 

learners to improve their cognitive performance. For example, good metacognition allows learners to 

correctly allocate study-time, check answers when they feel unsure about the correctness of the answer 

or provide a learning moment when an error is detected. Besides being considered a global ability 

playing a role in a large range of domains, metacognition, and consequently metacognitive monitoring, 

is usually considered to be a domain-general cognitive process that is correlated across content domains. 

This suggests that people who are good at evaluating their performance for one task, also tend to be 

good at evaluating their performance for another task (e.g. Geurten et al., 2018; Schraw et al., 1995). 

There is, however, evidence suggesting that this domain-generality only emerges over development. 
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Geurten and colleagues (2018) recently observed that metacognition is first domain-specific and then 

generalizes across domains as children mature. They found a gradual shift from domain-specific towards 

domain-general metacognition across the arithmetic and memory domains in children aged between 8 

and 13. In adults, more evidence for the domain-generality has been observed. Veenman and colleagues 

(1997) and Schraw and colleagues (Schraw et al., 1995; Schraw & Nietfeld, 1998) found that 

metacognitive measures are correlated across unrelated (cognitive) tasks. More specifically, Schraw and 

colleagues (1995) found significant correlations between metacognitive measures across eight different 

domains ranging from historic knowledge to knowledge of caloric values of food. This domain-general 

hypothesis in adults is also supported by brain imaging data that show that adults’ metacognitive abilities 

for different types of tasks partially depend on common neurobiological structures, such as the prefrontal 

cortex and precuneus (Fleming & Dolan, 2014). 

However, domain-specific knowledge and skills also seem to be important for metacognitive 

monitoring. For example, in young children (ages 5 to 8 years), Vo and colleagues (2014) showed that 

metacognition in the numerical domain was unrelated to metacognition in the emotional domain, 

suggesting young children’s metacognition is domain-specific. Based on their empirical findings, 

Schraw and colleagues (1995) suggested that in adults metacognitive monitoring within a specific 

domain is governed by general metacognitive processes in addition to domain-specific knowledge. 

Löffler, Von Der Linden and Schneider (2016) documented a twofold effect of expertise on monitoring 

in soccer: Although domain-specific knowledge enhances monitoring performance in some situations, 

more optimistic estimates (presumably due to the application of a familiarity heuristic) typically reduce 

monitoring accuracy in experts. Likewise, in mathematics, metacognitive monitoring has been found to 

be a function of domain-specific ability (e.g. Garcia et al., 2016; Lingel et al., 2019). Taken together, 

the existing research also illustrates the importance of domain-specific knowledge and skills for 

metacognitive monitoring.  

This issue of domain-specificity is a longstanding debate within the metacognitive literature (e.g. 

Geurten et al., 2018; Schraw et al., 1995; Schraw & Nietfeld, 1998; van Bon & Kuijpers, 2016; Veenman 

et al., 1997), both at the behavioural and brain-imaging level. Yet, in children, the results are scarce and 

rather inconclusive, with different results for various age groups as well as metacognitive measures.  

Firstly, age-related differences in the results on domain-specificity of metacognition in children are 

not surprising, as a critical development in monitoring is observed during early to late childhood (e.g. 

Geurten et al., 2018; Lyons & Ghetti, 2010). For example, in (early) primary school, metacognitive 

monitoring accuracy is found to increase (e.g. Ghetti, 2008; Lyons & Ghetti, 2010; Schneider, 2008, 

2010; Schneider & Lockl, 2008; Schneider & Löffler, 2016). In the same developmental time period of 

these age-related improvements in monitoring of cognition, there are also important age-related 

improvements in academic skills, such as arithmetic and spelling. The age-related metacognitive 

improvements are recognized to underlie several aspects of cognitive development in various domains 
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(e.g. improvements in accuracy; e.g. Lyons & Ghetti, 2010). Furthermore, based on their empirical 

findings, Geurten and colleagues (2018) conclude that a gradual shift toward domain-general 

metacognition occurs in children between 8 and 13 years, and that metacognition is no more bound by 

task content and domain knowledge after the age of 10. Against this background and to thoroughly 

investigate the domain-specificity question in children, the current research specifically recruited 8-9 

year-olds (third grade; Study 1) and 7-8 year-olds (second grade; Study 2), who are in the middle of this 

important developmental period for both metacognitive monitoring and academic skills. 

Secondly, the different results on domain-specificity of metacognition in children for different 

metacognitive measures may in part be due to different aspects of metacognition being investigated. 

Metacognition includes both declarative and procedural metacognition. As metacognition encompasses 

different aspects, it is not surprising that these different aspects of metacognition follow different 

developmental paths (Schneider & Löffler, 2016) and that they are differently associated with domain-

specific knowledge and skills. A recent study by Bellon and colleagues (2019), for example, found that 

within-domain metacognitive monitoring was associated with arithmetic performance, while declarative 

metacognitive knowledge was not. The authors suggest this might indicate that children’s metacognition 

is more domain-specific than it is domain-general. Yet, the authors based their suggestion on results on 

different aspects of metacognition, which were measured fundamentally differently (i.e. online, trial-by-

trial reports for metacognitive monitoring vs. general questionnaire for declarative metacognitive 

knowledge), making testing the domain-specificity hypothesis as well as making strong claims about 

domain-specificity of metacognition troublesome.  

To overcome these issues, the current research specifically focused on the monitoring aspect of 

metacognition. Extending the existing body of data, we included, in addition to the metacognitive 

monitoring measure in arithmetic, the same metacognitive monitoring measure in another domain of 

academic learning, i.e. spelling. By including metacognitive monitoring measures in two domains, and, 

importantly, by using the exact same paradigm to measure it, the current study was able to investigate 

the question of domain-specificity more thoroughly. The paradigm to measure metacognitive 

monitoring was the same as in Bellon et al. ( 2019) and Rinne and Mazzocco (2014). Spelling was 

included as a second domain to maximize the comparability of the two tasks in which metacognitive 

monitoring was measured. Arithmetic and spelling are quintessential domains in primary school and in 

both domains primary school children go through crucial developmental steps. Based on the children’s 

curriculum, we were able to select age-appropriate items. This allowed us to thoroughly investigate 

whether the results on the role of metacognitive monitoring in arithmetic are specific to the arithmetic 

domain or not.  

Based on the outstanding issues outlined above, this study aims to extend and deepen our knowledge 

on the domain-specificity of the role of metacognition in different academic domains in middle 

childhood. Specifically, this study will investigate whether metacognitive monitoring is domain-specific 
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or not by investigating (a) the associations between within-domain metacognitive monitoring and 

arithmetic and spelling; (b) whether metacognitive monitoring in one domain is associated with and/or 

predicted by metacognitive monitoring in the other domain; (c) whether performance in one domain is 

associated with and/or predicted by metacognitive monitoring in the other domain, and (d) these 

questions in two different age groups in primary school to fully grasp potential transitional periods in 

the domain-specificity of metacognitive monitoring. 

If, on the one hand, metacognition is highly domain-general, then metacognitive monitoring in the 

arithmetic and spelling tasks will be correlated and predictive of each other, even when controlled for 

academic performance – as arithmetic and spelling are highly related domains; and metacognitive 

monitoring in one domain will be associated with and predictive of academic performance in the other 

domain. If, on the other hand, metacognition is highly domain-specific, then the associations described 

above will be non-significant (frequentist statistics) and Bayes factors will be close to zero (Bayesian 

statistics; see below). These questions are investigated in two different age groups for which, based on 

the existing literature, different predictions can be made on the extent to which metacognitive 

monitoring is domain-general. By selecting participants in these two age groups, we aimed to capture 

an important period in the development of (the domain-generality of) metacognitive monitoring. In 

Study 1, we investigated these questions in 8-9-year-olds, for which domain-generality of metacognitive 

monitoring was predicted (third grade). Study 2 investigated these questions in younger children, namely 

7-8-year-olds, for which more domain-specificity of metacognitive monitoring was predicted (second 

grade). 

 

Study 1: Metacognitive monitoring in arithmetic 

and spelling in 8-9-year-olds (third grade) 

Method 

1 Participants 

Participants were 147 typically developing Flemish 8-9 year-olds (third grade; 69 girls; Mage = 8 

years, 10 months; SD = 3 months; [8 years 4 months - 9 years 4 months]), without a diagnosis of a 

developmental disorder, and who came from a dominantly middle-to-high socio-economic background. 

This study was approved by the social and societal ethics committee of KU Leuven. For every 

participant, written informed parental consent was obtained. 
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2 Procedure 

All participants participated in four test sessions, which took place at their own school during regular 

school hours. They all completed the tasks in the same order. In the context of a larger project, all 

children first participated in an individual session of which the data are not included in the current 

manuscript. Second, a session in small groups of eight children took place, including the computerized 

spelling task and motor speed task. Third, a second session in small groups took place, including the 

computerized arithmetic task and motor speed task. Fourth, in a group session in the classroom, the 

standardized arithmetic and spelling tests and the test of intellectual ability were administered. Sessions 

were separated by one to three days on average; they were never adjacent. Below we describe the key 

variables and control variables used to answer our research questions. The full cognitive testing battery 

is posted on the Open Science Framework (OSF) page of this project 

(https://osf.io/ypue4/?view_only=ce9f97af0e3149c28942a43499eafd32). 

3 Materials 

Materials consisted of written standardized tests and computer tasks designed with Open Sesame 

(Mathôt et al., 2012). Arithmetic and spelling skills were assessed with both a custom computerized task 

and a standardized test (i.e. Arithmetic: Tempo Test Arithmetic, de Vos, 1992; Spelling: standardized 

dictation, Moelands & Rymenans, 2003). The computerized tasks for arithmetic and spelling were 

specifically designed to be as similar as possible, to minimize the possibility that the results on domain-

specificity of metacognition were due to differences in paradigm. Both tasks were multiple choice tasks 

with specifically selected age-appropriate items (i.e. single digit addition and multiplication for 

arithmetic; three specific Dutch spelling rules for spelling). After a first introductory block, in the second 

block of each task, participants had to report their judgment on the accuracy of their academic answer 

after each trial, using the same metacognitive monitoring measure in both tasks. 

3.1 Arithmetic 

3.1.1 Custom computerized arithmetic task. 

This single-digit task included addition and multiplication items, and comprised all combinations of 

the numbers 2 to 9 for each operation (n = 36). The task consisted of two blocks, i.e. one introductory 

block without (n = 12) and one with (n = 60) a metacognitive monitoring measure (see below). Stimuli 

were pseudo-randomly divided into the two blocks and children were given a short break between 

blocks. Each block was preceded by four practice trials to familiarize the child with the task 

requirements. Performance on the practice items was not included in the performance measures. In both 

blocks, addition items were presented first (n = 6 in the first block; n = 30 in the second block). After a 

short instruction slide indicating multiplication items would follow, the multiplication items were 

presented (n = 6 in the first block; n = 30 in the second block). The position of the numerically largest 

operand was balanced. Each item was presented with two possible solutions, one on the left and one on 

https://osf.io/ypue4/?view_only=ce9f97af0e3149c28942a43499eafd32
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the right side of the screen. In half of the items, the correct solution was presented on the left side of the 

screen. Incorrect solutions for the addition items were created by adding or subtracting 1 or 2 to the 

solution (n = 7 for every category), or by using the answer to the corresponding multiplication item (e.g. 

6 + 3 with incorrect solution 18; n = 8). The incorrect solutions for the multiplication items were table 

related, i.e. solution -1 or +1 one of the operands (e.g. 6 × 3 with incorrect solution 24; n = 7 for every 

category), or the answer to the corresponding addition (e.g. 8 × 2 with incorrect solution 10; n = 8). Each 

trial started with a 250 ms fixation point in the centre of the screen and after 750 ms the stimulus 

appeared in white on a black background. The stimuli remained visible until response. The children had 

to indicate which of the presented solutions for the problem was correct (by pressing the corresponding 

key). The response time and answer were registered via the computer. Performance measures were both 

accuracy and the response time for correct answers in the second block (n = 60). 

3.1.2 Standardized arithmetic task. 

Arithmetic fluency was assessed by the Tempo Test Arithmetic (TTA; de Vos, 1992); a standardized 

pen-and-paper test of arithmetical fluency, which comprises five columns of arithmetic items (one 

column per operation and a mixed column), each increasing in difficulty. Participants got one minute 

per column to provide as many correct answers as possible. The performance measure was the total 

number of correctly solved items within the given time (i.e. total score over the five columns). 

3.2 Spelling 

3.2.1 Custom computerized spelling task. 

Spelling performance was measured with a computerized task consisting of two blocks, i.e. one 

introductory block without (n = 12) and one with (n = 60) a metacognitive monitoring measure (see 

below). Stimuli were pseudo-randomly divided into the two blocks and children were given a short break 

between blocks. Each block was preceded by six practice trials to familiarize the child with the task 

requirements. Performance on the practice items was not included in the performance measures. The 

items consisted of a Dutch word with a missing part, that was replaced by an underscore (e.g. ‘ko_ie’ 

for ‘koffie’), presented with two possible solutions, one on the left and one on the right side of the screen. 

We used three specific Dutch spelling rules, which were the focus of spelling instruction at the 

participants’ age. Firstly, the rule of open and closed syllables was used, on the basis of which one can 

figure out if one or two vowels or consonants have to be written. Secondly, the extension rule was used, 

on the basis of which one can figure out if words with a [t] sound at the end of the word are written with 

a ‘t’ or a ‘d’. To correctly spell these two types of words, children can either use these rules, or when 

they have extensive experience with these words, retrieve the correct spelling from their memory. 

Flemish third graders have the most experience with the extension rule, and are in the learning phase for 

the open and closed syllables rule. Stepwise, they go from learning the rule and using the procedure to 

spell the words, towards automatization of the correct spelling and thus retrieving it from memory. This 

spelling development is analogous to arithmetic development in third grade (i.e. from procedure use to 
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retrieval). A third category of words was added for which no rule is available, but only retrieval from 

long-term memory is possible (i.e. au/ou-words; ei/ij-words). The diphthongs in these words have the 

same pronunciation, but are spelt differently (e.g. ‘reis’ vs. ‘wijs’ have both the [ɛi] sound) – there is no 

rule to determine whether one or the other diphthong should be used and children have to learn this by 

heart. All items were selected from curriculum-based glossaries. Incorrect solutions were created by 

using the related distractor (n = 14 for each category), namely one or two vowels or consonants for the 

open and closed syllables rule (e.g. koffie: ‘ko_ie’ with options ‘f’ or ‘ff’), ‘t’ or ‘d’ for the extension 

rule (e.g. kast: ‘kas_’ with options ‘t’ or ‘d’), and the related diphthong for the to-be-retrieved words 

(e.g. konijn: ‘kon_n’ with options ‘ei’ or ‘ij’). In half of the items, the correct solution was presented on 

the left side of the screen. Each trial started with a 250 ms fixation point in the centre of the screen and 

after 750 ms children were presented on audiotape with the word. Then, the visual stimulus appeared in 

white on a black background. The stimuli remained visible until response. The children had to indicate 

which of the presented solutions for the problem was correct (by pressing the corresponding key; i.e. 

left/right key). The response time and answer were registered via the computer. Performance measures 

were both accuracy and the response time for correct answers in the second block (n = 60). 

3.2.2 Standardized spelling task. 

Spelling ability was also measured with a standardized dictation (Moelands & Rymenans, 2003). We 

administered the subtest for children at the end of third grade, which includes age-appropriate, 

curriculum-based items. The experimenter read aloud 43 sentences and the participants had to write one 

word down that was repeated two times after the sentence was read. The performance measure was the 

total number of correctly written words. 

3.3 Metacognitive monitoring 

In the second block of the arithmetic and the spelling tasks (n = 60 for each task), a metacognitive 

monitoring measure was added to the items. Children had to report their judgment on the accuracy of 

their answer to the academic item on a trial-by-trial basis (e.g. Bellon et al., 2019; Rinne & Mazzocco, 

2014). More specifically, after giving their answer to the arithmetic/spelling problem, children had to 

indicate if they thought their answer was Correct, Incorrect, or if they Did not know. We used emoticons 

in combination with the options (e.g.  and Correct) to make the task more attractive and feasible for 

children (see figure 5.1). Children had to respond by pressing the key corresponding to their 

metacognitive judgment (i.e. indicated with corresponding emoticon stickers). Metacognitive 

monitoring skills were operationalised as calibration of this judgment (i.e. the alignment between one’s 

judgment in the accuracy of their answer to a problem and the actual accuracy of the answer). Namely, 

a calibration score of 2 was obtained if their metacognitive judgment corresponded to their actual 

performance (i.e. metacognitively judged as Correct and indeed correct academic answer; 

metacognitively judged as Incorrect and indeed incorrect academic answer), a calibration score of 0 if 

their metacognitive judgement did not correspond to their actual performance (i.e. metacognitively 
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judged as Correct and in fact incorrect academic answer; metacognitively judged as Incorrect and in 

fact correct academic answer), and a calibration score of 1 if children indicated they Did not know about 

their academic answer. The metacognitive monitoring score per child was the mean of all calibration 

scores (i.e. calibration score per arithmetic/spelling item; n = 60 per domain) and was calculated for 

each task separately. The higher the calibration scores, the better the metacognitive monitoring skills. 

To familiarize the children with the task, practice items were presented in each task.  

 

Figure 5.1. Example of metacognitive monitoring question after arithmetic/spelling item. 

 

3.4 Control variables 

3.4.1 Intellectual ability. 

Intellectual ability was assessed through Raven’s Standard Progressive Matrices (Raven et al., 1992). 

Children were given 60 multiple-choice items in which they had to complete a pattern. The performance 

measure was the number of correctly solved patterns.  

3.4.2 Motor speed. 

A motor speed task was included as a control for children’s response speed on the keyboard (Bellon 

et al., 2019). Two shapes were simultaneously presented on either side of the screen and children had to 

indicate which of the two shapes was filled by pressing the corresponding key (i.e. left/right key). All 

shapes were similar in size and each shape occurred four times filled and four times non-filled, yielding 

20 trials. The position of the filled shape was balanced. After fixation, stimuli appeared until response. 

Three practice trials were included to familiarize the children with the task. The performance measure 

was the average response time for correct responses.  
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4 Data analysis 

A comprehensive analyses plan was preregistered on the OSF page of this project 

(https://osf.io/ypue4/?view_only=ce9f97af0e3149c28942a43499eafd32). The key analyses to answer 

our research questions are presented below; the results of the remaining preregistered analyses can be 

found in the supplementary materials. 

We ran frequentist analyses using both uni- and multivariate techniques, as well as Bayesian 

analyses. Frequentist analyses allowed us to explore our data by means of a well-known method to gauge 

statistical support for the hypotheses of interest. Bayesian statistics allowed us to test the degree of 

support for a hypothesis (i.e. degree of strength of evidence in favour of or against any given hypothesis), 

expressed as the Bayes factor (BF10; the ratio between the evidence in support of the alternative 

hypothesis over the null hypothesis). Although Bayes factors provide a continuous measure of degree 

of evidence, there are some conventional approximate guidelines for interpretation (Andraszewicz et al., 

2015, for a classification scheme): BF10 = 1 provides no evidence either way, BF10 > 1 anecdotal, BF10 

> 3 moderate, BF10 > 10 strong, BF10 > 30 very strong and BF10 >100 decisive evidence for the alternative 

hypothesis; BF10 < 1 anecdotal, BF10 < 0.33 moderate, BF10 < 0.10 strong, BF10 < 0.03 very strong and 

BF10 < 0.01 decisive evidence for the null hypothesis. By adding these Bayesian analyses, we deepened 

our findings from the traditional analyses, as we were able to identify evidence in favour of the null 

hypothesis, consequently, identify which hypothesis is most plausible (i.e. alternative hypothesis vs. null 

hypothesis) and which predictors are the strongest. This is particularly relevant for the current study 

because we can compare the strength of evidence in favour of the domain-general hypothesis (i.e. 

association between metacognitive monitoring measures in different domains; association between 

performance and metacognitive monitoring across domains) versus the domain-specific hypothesis (i.e. 

no association between metacognitive monitoring measures in different domains; no association 

between performance and metacognitive monitoring across domains). 

To answer our research questions, we used correlation and regression analyses. For the Bayesian 

analyses, we used a default prior with prior width set to 1 for Pearson correlations and to .354 for the 

linear regression analyses. For Bayesian regressions, a BFinclusion was calculated for every predictor in 

the model, which represents the change from prior to posterior odds (i.e. BF10), where the odds concern 

all the models with a predictor of interest to all models without that predictor (i.e. a Bayes factor for 

including a predictor averaged across the models under consideration).  

As planned in the preregistration, we excluded a child’s performance on a task if this performance 

was more than three standard deviations from the mean of the task (i.e. ≤ 3% of the data per task). Due 

to unforeseen circumstances during data collection (e.g. school bell ringing), we additionally excluded 

some data at the item level (i.e. < 0.57% of items per task) that were considered to be measurement 

errors, i.e. when the data point was an outlier (i.e. more than three standard deviations from the mean) 

https://osf.io/ypue4/?view_only=ce9f97af0e3149c28942a43499eafd32
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at both the item level (i.e. compared to the general mean of the item) and at the subject level (i.e. 

compared to the personal mean of the subject). 

Results 

The descriptive statistics of all measures are presented in Appendix A. Additionally, Pearson 

correlation coefficients of all variables under study were calculated (Appendix B). Although not 

originally pre-registered, we additionally re-calculated all analyses below with chronological age as an 

additional control variable. Considering chronological age within grade in the analyses reported below 

did not change the interpretation of the results (Appendix C). 

1 The role of metacognitive monitoring in arithmetic and spelling performance 

Pearson correlation coefficients of the associations between metacognitive monitoring and the 

academic skills are presented in Table 5.1. 

 

Table 5.1  

Correlation analyses of metacognitive monitoring and academic performance measures in 8-9-year-

olds (Grade 3) 

 Arithmetic Spelling 

 Custom 

task – 

Accuracy a 

Custom 

task - 

RT b 

Standardized 

task (TTA) a 

Custom 

task – 

Accuracy a 

Custom 

task -

RT b 

Standardized 

task 

(dictation) a 

Metacognitive 

monitoring 

      

Arithmetic       

r .84 -.08 .38 .45 .11 .26 

p <.001 .38 <.001 <.001 .20 .003 

BF10 >100 0.16 >100 >100 0.24 9.65 

Spelling       

r .48 -.19 .33 .91 -.02 .66 

p <.001 0.03 <.001 <.001 .79 <.001 

BF10 >100 1.18 >100 >100 0.11 >100 
Note. a Controlled for intellectual ability; b Controlled for intellectual ability and motor speed on the keyboard. 

 

Metacognitive monitoring in the arithmetic task (MMarith) was significantly correlated with arithmetic 

accuracy (Arithmeticacc) and the tempo test arithmetic (TTA), with Bayes factors indicating decisive 

evidence in favour of the associations, even when controlling for intellectual ability. There was no 

significant correlation with response time for correct arithmetic answers (Arithmeticrt) and the Bayes 

factor indicated moderate evidence in favour of no association. 

Metacognitive monitoring in the spelling task (MMspell) was significantly correlated with spelling 

accuracy (Spellingacc) and dictation, with Bayes factors indicating decisive evidence in favour of the 

associations, even when controlling for intellectual ability. There was no significant correlation with 
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response time for correct spelling answers (Spellingrt) and the Bayes factor indicated moderate evidence 

in favour of no association. 

Based on the absence of significant (frequentist statistics) and supported (Bayesian statistics) 

associations with our response time performance measures (Arithmeticrt and Spellingrt), and because 

these measures only take into account data for correct answers, losing important information on 

performance and possibly overestimating performance, the response time performance measures will 

not be considered in further analyses.  

2 Domain-specificity of the role of metacognitive monitoring 

To examine domain-specificity of the role of metacognition, we first investigated the association 

between MMarith and MMspell with correlation and regression analyses. Specifically, we investigated 

whether MMarith and MMspell were correlated, even when controlling for intellectual ability and academic 

performance in both domains. Controlling for intellectual ability and performance in both standardized 

academic tasks was necessary, to make sure the observed associations between MMarith and MMspell were 

not (entirely) driven by their shared reliance on intellectual ability or by the high correlation between 

both academic domains. 

Secondly, we studied the role of MMspell in arithmetic performance and MMarith in spelling 

performance with correlation and regression analyses. In other words, cross-domain correlations 

between academic performance in one domain and metacognitive monitoring in the other domain were 

calculated. As performance in the arithmetic and spelling tasks was highly correlated, the cross-domain 

associations of metacognitive monitoring and academic performance might rely on the correlation 

between the academic tasks. Therefore, we used regression models to investigate whether metacognitive 

monitoring in arithmetic uniquely predicted spelling performance on top of arithmetic performance, and 

vice versa. 

In a final step, we investigated the unique contribution of cross-domain metacognitive monitoring to 

performance over within-domain metacognitive monitoring using regression models including 

metacognitive monitoring in both domains as predictors for academic performance. 

2.1 Associations between metacognitive monitoring in different domains 

MMarith and MMspell were significantly correlated, even when controlling for intellectual ability, and 

arithmetic and spelling performance on the standardized tasks (r = .42; p < .001; BF10 > 100). Regression 

analyses confirmed that metacognitive monitoring in one domain was uniquely predicted by 

metacognitive monitoring in the other domain, even when simultaneously considered with intellectual 

ability and performance on the standardized tasks in both academic domains (see Table 5.2). Additional 

post-hoc analyses that were not preregistered indicated that the results were the same when including 

academic achievement as measured with accuracy in the computerized academic tasks instead of 

academic achievement as measured with the standardized academic tasks. 
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Table 5.2  

Regression analyses of MMarith and MMspell performance with metacognitive monitoring in the other 

domain and standardized task performance in both domains as predictors 

 MMarith 

 β t p BFinclusion 

Intellectual ability .16 2.12 .04 2.90 

TTA .26 3.62 <.001 72.57 

Dictation  -.14 -1.50 .14 1.46 

MMspell .51 5.26 <.001 >100 

 MMspell 

 β t p BFinclusion 

Intellectual ability .07 1.07 .29 0.38 

Dictation  .55 8.77 <.001 >100 

TTA .01 0.13 .90 0.25 

MMarith  .34 5.26 <.001 >100 
Note. MMarith = metacognitive monitoring in the arithmetic task; MMspell = metacognitive monitoring in the 

spelling task; TTA = Tempo Test Arithmetic. 

2.2 Cross-domain performance associations of metacognitive monitoring 

Table 5.1 shows cross-domain correlations between academic performance and metacognitive 

monitoring in the other domain. MMarith was significantly correlated with both spelling performance 

measures (i.e. Spellingacc and dictation), with a Bayes factor indicating moderate to decisive evidence. 

MMspell was significantly correlated with both arithmetic performance measures (i.e. Arithmeticacc and 

TTA), with a Bayes factor indicating decisive evidence. 

We further investigated whether metacognitive monitoring in arithmetic uniquely predicted spelling 

performance on top of arithmetic performance; and vice versa. Namely, we predicted arithmetic 

performance based on MMspell and dictation, and spelling performance based on MMarith and TTA (Table 

5.3). These regression analyses showed that, even when performance in the academic domain was taken 

into account, metacognitive monitoring in that domain remained a significant and supported predictor 

of academic performance in the other domain (all ps < .05; all BFs10 >5). 

When metacognitive monitoring scores in both domains were considered simultaneously to predict 

academic performance (using regression analyses), only the role of metacognitive monitoring within the 

domain itself remained significant (frequentist statistics) and supported (Bayesian statistics). Namely, 

when MMarith and MMspell were used to predict arithmetic performance, only MMarith was a significant 

and supported predictor (Arithmeticacc: p < .001; BFinclusion > 100; TTA: p = .001; BFinclusion > 100 ), not 

MMspell (Arithmeticacc: p = .41; BFinclusion = 0.18; TTA: p = .10; BFinclusion = 1.36). On the other hand, 

when MMarith and MMspell were used to predict spelling performance, only MMspell was a significant and 

supported predictor (Spellingacc: p <.001; BFinclusion > 100; Dictation: p < .001; BFinclusion > 100), not 

MMarith (Spellingacc: p = .38; BFinclusion = .06; Dictation: p = .61; BFinclusion = .24). 

  



140 | C h a p t e r  5  

 

 

5 

Table 5.3  

Regression analyses of arithmetic performance (i.e. arithmeticacc and TTA) and spelling performance 

(i.e. spellingacc and dictation) with metacognitive monitoring in the other domain and standardized task 

performance in the other domain as predictors 

 Arithmetic 

 Arithmeticacc TTA 

 β t p BFinclusion β t p BFinclusion 

MMspell .54 5.18 <.001 5.03 .24 2.11 .04 >100 

Dictation -.06 -.54 .59 2.07 .19 1.73 .09 0.37 

 Spelling 

 Spellingacc Dictation 

 β t p BFinclusion β t p BFinclusion 

MMarith .47 5.89 <.001 >100 .23 2.66 .009 10.84 

TTA .12 1.46 .15 0.86 .25 2.95 .004 23.59 

Note. MMarith = metacognitive monitoring in the arithmetic task; MMspell = metacognitive monitoring in the 

spelling task; TTA = Tempo Test Arithmetic. 

 

Interim discussion 

The results of Study 1 reveal that within-domain metacognitive monitoring was an important 

predictor of both arithmetic and spelling performance. Monitoring measures in both domains were 

highly correlated and predictive of one another, even after controlling for intellectual ability and 

performance on both academic tasks. Both monitoring measures correlated with performance in the 

other academic domain, ever after controlling for performance within the domain (e.g. significant 

correlation of MMarith with spelling performance, controlled for arithmetic performance). When 

monitoring within the domain was added above monitoring across-domain, only monitoring within the 

domain remained a significant predictor of academic performance. Taken together, these results provide 

substantial evidence for domain-generality of metacognitive monitoring in academic domains in 8-9-

year-olds, in addition to the importance of some degree of domain-specificity in monitoring skills.  

 These results leave the question of whether this domain-generality is the result of a shift (e.g. 

Geurten et al., 2018) in early primary school unanswered. One possibility is that the 8-9-year-olds 

already went through an important transition regarding domain-generality of metacognitive monitoring, 

but that such domain-generality is not observed at younger ages. On the other hand, it is possible that 

no shift to domain-generality has occurred because also at a younger age, domain-generality can be 

observed. To test this, we additionally recruited a new sample of children that were one year younger, 

i.e. 7-8-year-olds (Study 2). The same research questions as in Study 1 were studied using the exact 

same paradigm. This allowed us to test whether domain-generality is already observed at younger ages 

or not. 
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Study 2: Metacognitive monitoring in arithmetic 

and spelling in 7-8-year-olds (second grade) 

Methods 

1 Participants 

Participants were 77 typically developing Flemish 7-8 year-olds (second grade; 49 girls; Mage = 7 

years, 8 months; SD = 4 months; [7 years 1 month - 8 years 1 month]), without a diagnosis of a 

developmental disorder, and who came from a dominantly middle-to-high socio-economic background. 

For every participant, written informed parental consent was obtained.  

2 Procedure 

The procedure was the same as in Study 1.  

3 Materials 

Materials were the same as in Study 1. The items in the custom arithmetic and spelling tasks were 

adapted from Study 1 to be age appropriate for second graders. Namely, for arithmetic, only single-digit 

addition was administered (n = 30); for spelling only two specific Dutch spelling rules were used (i.e. 

extension rule and to be retrieved words with diphthongs; n = 30). The standardized arithmetic task was 

exactly the same as in Study 1. As for the standardized dictation, we administered the subtest for children 

in the middle of second grade, which includes age-appropriate, curriculum-based items (Moelands & 

Rymenans, 2003) (n = 42).  

4 Data analysis 

For this follow-up study, we carried out the same analyses as preregistered for Study 1 

(https://osf.io/ypue4/?view_only=ce9f97af0e3149c28942a43499eafd32). The same exclusion criteria 

for data as in Study 1 were applied. Less than 4 % of the data per task was excluded as an outlier; less 

than 0.90% of the items per task were excluded as a measurement error. 

Results 

The descriptive statistics of all measures are presented in Appendix A. Additionally, Pearson 

correlation coefficients of all variables under study were calculated (Appendix B). Although not 

originally pre-registered, we additionally re-calculated all analyses below with chronological age as an 

additional control variable. Considering chronological age within grade in the analyses reported below 

did not change the interpretation of the results (Appendix C). 

  

https://osf.io/ypue4/?view_only=ce9f97af0e3149c28942a43499eafd32
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1 The role of metacognitive monitoring in arithmetic and spelling performance 

Pearson correlation coefficients of the associations between metacognitive monitoring and academic 

performance are presented in Table 5.4. 

Table 5.4  

Correlation analyses of metacognitive monitoring and academic performance measures in 7-8-year-

olds (Grade 2) 

 Arithmetic Spelling 

 Custom 

task – 

Accuracy a 

Custom 

task - 

RT b 

Standardized 

task (TTA) a 

Custom 

task – 

Accuracy a 

Custom 

task -

RT b 

Standardized 

task 

(dictation) a 

Metacognitive 

monitoring 

      

Arithmetic       

r .74 .30 .47 .11 .06 .20 

p <.001 .02 <.001 .38 .66 .11 

BF10 >100 2.60 >100 0.23 0.17 0.53 

Spelling       

r .03 .11 .05 .89 .03 .32 

p .84 .40 .69 <.001 .82 .01 

BF10 0.16 0.11 0.17 >100 0.16 4.12 
Note. a Controlled for intellectual ability; b Controlled for intellectual ability and motor speed on the keyboard. 

 

MMarith was significantly correlated with all three arithmetic performance measures. Bayes factors 

indicate that the evidence for an association with Arithmeticacc and the TTA is decisive, while there is 

only anecdotal evidence for an association with Arithmeticrt.  

MMspell was significantly correlated with both Spellingacc and dictation, with Bayes factors indicating 

moderate to decisive evidence for an association. There was no significant correlation with Spellingrt 

and the Bayes factor indicated moderate evidence in favour of no association.  

Based on the same rationale as Study 1, the response time performance measures were not considered 

in further analyses. 

2 Domain-specificity of the role of metacognitive monitoring 

MMarith and MMspell were not significantly correlated after controlling for intellectual ability (r = .14, 

p = .28). The Bayes factor indicated there was moderate evidence in favour for no association (BF10 = 

0.28). Hence, further control analyses (i.e. in line with Study 1 in which the correlation between MMarith 

and MMspell was also controlled for performance on the TTA and dictation) were not performed. 

Table 5.4 shows cross-domain correlations between academic performance and metacognitive 

monitoring in the other domain. MMarith was not significantly correlated with any of the spelling 

performance measures. Bayes factors indicated moderate evidence in favour of no association. MMspell 

was not significantly related to any of the arithmetic measures. Bayes factors indicated anecdotal to 

moderate evidence in favour of no association.  
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Interim discussion 

The results of Study 2 revealed that within-domain metacognitive monitoring was an important 

predictor of both arithmetic and spelling performance. Monitoring measures in both domains were not 

correlated, and both monitoring measures did not correlate with performance in the other academic 

domain. These results provide substantial evidence for domain-specificity of metacognitive monitoring 

in academic domains in 7-8-year-olds (second graders). No domain-general effect of metacognitive 

monitoring was observed, in contrast to the 8-9-year-olds (third grade children; Study 1). 

 

General discussion 

Two recent studies found evidence for within-domain metacognitive monitoring as an important 

predictor of arithmetic (Bellon et al., 2019; Rinne & Mazzocco, 2014). One outstanding question is 

whether these results regarding the role of metacognitive monitoring in arithmetic are specific to the 

arithmetic domain, or whether they are reflective of a more general role of metacognitive monitoring in 

academic performance. This study adds to the existing literature in an important way by (a) investigating 

metacognitive monitoring in two related, yet distinct academic domains, (b) studying whether 

monitoring in one domain was associated with and predictive of monitoring in the other domain (and 

vice versa), and (c) studying whether monitoring in one domain was associated with and predictive of 

performance in the other domain (and vice versa), and importantly by (d) doing this in two important 

age groups, namely children aged 8-9 (Study 1) and 7-8 (Study 2) who are in an important developmental 

phase for both academic performance and metacognition, and using the exact same paradigm in both 

age groups and both domains. 

Our results reveal that within-domain metacognitive monitoring was an important predictor of both 

arithmetic and spelling performance in both 8-9-year-olds (Study 1) and 7-8-year-olds (Study 2). 

Although metacognitive monitoring in arithmetic and spelling were highly correlated and predictive of 

one another in 8-9-year-olds (Study 1), they were not in younger 7-8-year-old children (Study 2). In 8-

9-year-olds, but not in 7-8-year-olds, both monitoring measures correlated with performance in the other 

academic domain, even after controlling for performance within the domain (e.g. significant correlation 

of MMarith with spelling performance, controlled for arithmetic performance). These results provide 

evidence for the emergence of domain-generality of metacognitive monitoring between second and third 

grade (i.e. 7-9-year-olds). 

Our results nicely replicate associations between metacognitive monitoring and academic 

performance (e.g. Bellon et al., 2019; Freeman et al., 2017; Rinne & Mazzocco, 2014; Roebers et al., 

2014; Roebers & Spiess, 2017). Combining the data of both studies, we are able to confirm the 
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theoretically assumed development of metacognition from highly domain- and situation-specific to more 

flexible and domain-general with practice and experience (Borkowski et al., 2000). Our results regarding 

a possible underlying domain-general element of metacognitive monitoring in middle primary school 

children (8-9-year-olds) are in line with the existing literature in older ages and/or other domains (e.g. 

Geurten et al., 2018; Schraw et al., 1995; Veenman et al., 1997). For example, Schraw and colleagues 

(Schraw et al., 1995; Schraw & Nietfeld, 1998) and Veenman and colleagues (1997) found evidence for 

domain-generality of metacognitive monitoring in adults; Geurten et al. (2018) observed a shift to 

domain-general metacognition between 8 and 13 across the arithmetic and memory domain. Our results 

also show the importance of domain-specific knowledge for metacognitive performance, as was 

previously found in non-academic domains (i.e. soccer) by for example Löffler and colleagues (2016), 

in very young children by Vo and colleagues (2014), and in 12-year-olds in mathematics by Lingel and 

colleagues (2019). Our results add to this body of research that domain-generality of metacognitive 

monitoring emerges between the ages of 7-to-9, yet that domain-specific knowledge and skills remain 

important for metacognitive monitoring, even in highly related academic domains.  

Schraw and colleagues (1995) note that when performance is correlated among domains (i.e. as they 

were in Study 1), correlated metacognitive monitoring scores (i.e. as they were in Study 1) pose no 

serious threat to the assumption that monitoring is domain-specific. However, when they are correlated 

after removing the variation attributable to performance scores, as we did using partial correlations and 

regression analyses, this outcome cannot be explained on the basis of domain-specific knowledge and a 

domain-general argument needs to be invoked. As both monitoring performances remained significantly 

correlated after removing the variation attributable to performance scores, our results indicate that in 8-

9-year-olds (Study 1) there might be an underlying domain-general element of metacognition within 

both metacognitive monitoring scores. This was not observed in 7-8-year-olds (Study 2). All in all, these 

results point to the emergence of domain-generality of metacognitive monitoring in between second (7-

8-year-olds) and third (8-9-year-olds) grade of primary school. 

Our results still provide some evidence for a domain-specific element of metacognitive monitoring 

in 8-9-year-olds. Although metacognitive monitoring across-domain was an important predictor of 

performance, the associations with monitoring within-domain were significantly larger than with 

monitoring across-domain. Once monitoring within a domain was considered, the predictive power of 

monitoring across-domain was no longer significant/supported. These results suggest the continuing 

importance of domain-specific knowledge and skills. This domain-specific element could explain the 

additional predictive power of monitoring within-domain in addition to metacognitive monitoring 

across-domain. 

Based on the important role that metacognitive monitoring was found to have in arithmetic 

performance (Bellon et al., 2019; Rinne & Mazzocco, 2014), the current study investigated the domain-

specificity question of metacognition by also including spelling performance. We deliberately included 
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a different, yet correlated skill within the academic domain to thoroughly investigate the extent to which 

metacognition might be domain-specific. This is different from existing research, where the domain-

specificity question was investigated in very distant domains. For example, Vo and colleagues (2014) 

investigated domain-specificity in the numerical domain versus emotion discrimination. The use of 

spelling alongside arithmetic made it possible to use the exact same paradigm to measure metacognitive 

monitoring and maximize the comparability of the two tasks. The fact that the computerized tasks for 

arithmetic and spelling were specifically designed to be as similar as possible, minimized the possibility 

that the results on domain-specificity of metacognition were due to differences in paradigms. By 

including standardized arithmetic and spelling tasks, which are not as similar to each other and measure 

performance in an ecologically valid way, we minimized the possibility that the results on domain-

generality of metacognition were due to similarities in paradigms. While there is substantial evidence in 

the current studies for the emergence of domain-general metacognitive monitoring processes, the results 

also indicate that, even in highly related domains, domain-specific knowledge and skills are important 

for metacognitive monitoring in primary school children. 

Although the custom arithmetic and spelling tasks were designed with age-appropriate items, a slight 

difference in task difficulty was present, with the computerized spelling tasks being more difficult than 

the arithmetic tasks. Schraw and colleagues (1995) pointed out that task difficulty, as a characteristic of 

the test environment, might have an important influence on metacognitive monitoring. They found that, 

with different task difficulty levels, metacognitive monitoring in adults was mostly domain-specific, 

yet, once tests were matched on test characteristics, monitoring was mostly domain-general. To make 

sure our results were not influenced by this slight difference in task difficulty, we selected, post-hoc, a 

subset of items per task (n = 40 for Study 1; n = 20 for Study 2) that were matched on task difficulty 

(i.e. t-test comparing accuracy in arithmetic and spelling selection: Study 1: t(138) = 0.12, p = .91; Study 

2: t(71) = 0.36, p = .72). These post-hoc exploratory results showed that our findings on metacognitive 

monitoring and its specificity did not change when restricting the analyses to those items that were 

matched in task difficulty.  

Performance measures of arithmetic and spelling were accuracy in the computerized tasks, and 

widely-used, standardized pen-and-paper tasks. As accuracy data were a fundamental part of our 

metacognitive monitoring scoring, in the interpretation of the results, the largest focus should be on the 

standardized measures, as metacognitive monitoring was measured independently from these measures. 

The computerized and the standardized tasks were both age-appropriate measures, yet the standardized 

tasks focused less on specific items of the curriculum (i.e. only single-digit arithmetic in the 

computerized arithmetic task; only specific Dutch spelling rules in the computerized spelling task), for 

which reason they were more wide-ranged and valid measures of children’s arithmetic and spelling 

skills. The standardized tasks were the most ecologically valid measures, assessing arithmetic and 

spelling performance as they are assessed in the classroom. Including these standardized tasks in the 
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design is an essential asset of this study compared to the existing literature (e.g. Bellon et al., 2019; 

Rinne & Mazzocco, 2014), as we were able to generalize our results from the role of metacognitive 

monitoring within the task, to within the domain, independently from the task in which monitoring was 

measured. 

Although the driving mechanisms for the gradual development from domain-specificity to domain-

generality of metacognitive monitoring cannot be determined on the basis of the current study, it is 

important to reflect on why metacognition shifts to being more domain-general around the ages 8-9. The 

existing literature offers some theoretical possibilities, albeit speculatively, that should be investigated 

in future research.  

The development from more domain-specificity of metacognitive monitoring towards more domain-

generality in this age group is likely reflective of a gradual transition that occurs in the development of 

primary school children (e.g. Schneider, 2010). In early stages of this development, children’s 

metacognitive monitoring might still be highly dependent on the (characteristics of the) specific stimuli, 

while over development, through experiences of failure and success, and with practice in assessing one’s 

performance as well as in (academic) tasks, monitoring might become more generic. These hypotheses 

and our results can also be interpreted within the dual-process framework of metacognition (e.g. Koriat, 

2007; Koriat & Ackerman, 2010; Koriat & Levy-sadot, 1999), which Geurten et al. (2018) used to 

interpret their findings. According to this dual-process framework of metacognition (Koriat, 2007; 

Koriat & Ackerman, 2010; Koriat & Levy-sadot, 1999), metacognitive judgments can, on the one hand, 

be experience-based, i.e. based on fast and automatic inferences made from a variety of cues that reside 

from immediate feedback from the task and that are then heuristically used to guide decisions. As such, 

these metacognitive judgments are task-dependent and probably difficult to generalize across domains. 

On the other hand, metacognitive judgments can be information-based, i.e. based on conscious and 

deliberate inferences, in which various pieces of information retrieved from memory are consulted and 

weighted in order to reach an advised judgment. These conscious and effortful judgments are more likely 

to generalize to other domains. Taken together with the current results, this dual-processing model of 

metacognition may suggest that 7-8 year-old (second grade) children preferentially rely on automatic 

inferences when making judgments, while improvements of metacognitive abilities may enable 8-9 

year-old children (third grade) to rely more often on conscious and deliberate information-based 

processes.  

Another explanation for the gradual shift from domain-specificity to domain-generality of 

metacognition could be that this development might be associated with the development in other general 

cognitive functions, such as working memory capacity or intellectual ability. For example, Veenman 

and colleagues (2005) found that metacognitive skills develop alongside, but not entirely as part of 

intellectual ability. Growth in these other general cognitive functions might enable a shift from domain-

specificity to domain-generality of metacognition.  
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Finally, the development from domain-specificity towards domain-generality might also be driven 

by education, as teachers instruct children on assessing their own performance, which is at first very 

focused on specific tasks. Over development, children might internalise this into a semantic network of 

their own abilities, which in turn might generalise to other tasks and thus become more general.  

It is essential to note that none of the above-mentioned hypotheses can be empirically evaluated 

within the current study. The focus of the current study was on whether a development toward domain-

generality in metacognitive monitoring occurs in primary school children, in related academic domains, 

and, secondly when this occurs. The question on how, i.e. what mechanisms lie behind this, and why this 

is the case at this age, are important questions for future research. 

Future research should also examine the question of domain-specificity of metacognition 

longitudinally, investigating the potential shift from domain-specificity to domain-generality in the same 

group of primary school children. Such a research design will allow one to investigate the directions of 

the associations between metacognition and academic performance and how these associations evolve 

over time. Furthermore, brain-imaging research in children could be very useful to investigate the 

question of domain-specificity of metacognition, by, for example, testing whether metacognitive 

abilities for different types of tasks (partially) depend on common neurobiological structures such as the 

prefrontal cortex, as has been observed in adults (e.g. Fleming & Dolan, 2014). 

 

Conclusion 

To conclude, the results of this study show that metacognitive monitoring of performance is an 

important predictor of academic skills in primary school children. While in young primary school 

children (7-8-year-olds), this process is domain-specific, in slightly older children (8-9-year-olds), this 

is a predominantly domain-general process, in which metacognitive monitoring of performance is an 

important predictor of academic skills independently of the academic task and domain it is measured in, 

even in highly related domains. Besides depending on domain-general metacognitive processes, 

metacognitive monitoring remains to be dependent of domain-specific performance and knowledge. 

Knowing whether metacognition is rather domain-specific or domain-general, and when domain-

generality emerges, is of importance for educators, as this might impact on how they provide instructions 

in metacognitive monitoring, namely for each task or domain separately (i.e. domain-specific 

metacognition) or concurrently in different tasks and domains (expecting it to transfer to new domains; 

domain-general metacognition). 
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Appendixes 

1 Appendix A – Descriptive statistics 

Table 5.A1   

Descriptive statistics of the key variables in 8-9-year olds (Grade 3; Study 1) 

 n M SD Range 

Arithmetic     

Custom task      

Accuracy 141 .94 .06 [.75-1.00] 

Response time (ms) 141 3833 1479 [1537-8543] 

Standardized task     

Total score 144 77.70 19.20 [36.00-133.00] 

Spelling     

Custom task     

Accuracy 145 .78 .12 [.45-.98] 

Response time (ms) 145 2434 729 [1188-4586] 

Standardized task     

Total score 144 30.00 8.28 [9.00-43.00] 

Metacognitive monitoring     

In arithmetic task 141 1.88 0.12 [1.53-2.00] 

In spelling task 145 1.53 0.25 [0.88-1.97] 

Control     

Intellectual ability     

Raven 143 36.10 7.43 [13.00-52.00] 

Motor Speed     

Accuracy 143 .98 .03 [.90-1.00] 

Response time (ms) 143 593 135 [390-1044] 
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Table 5.A2  

Descriptive statistics of the key variables in 7-8-year-olds (Grade 2; Study 2) 

 n M SD Range 

Arithmetic     

Custom task      

Accuracy 73 .89 .12 [.50-1.00] 

Response time (ms) 73 4384 1541 [1606-8273] 

Standardized task     

Total score 68 27.24 6.74 [14-43] 

Spelling     

Custom task     

Accuracy 76 .70 .13 [.43-1.00] 

Response time (ms) 76 2994 1063 [1052-7368] 

Standardized task     

Total score 68 32.65 5.66 [17-42] 

Metacognitive monitoring     

In arithmetic task 73 1.74 0.25 [0.97-2.00] 

In spelling task 76 1.38 0.26 [0.97-1.93] 

Control     

Intellectual ability     

Raven 68 29.16 8.39 [11-48] 

Motor Speed     

Accuracy 74 .99 .03 [.95-1.00] 

Response time (ms) 74 634 138 [413-1073] 
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2 Appendix B – All intercorrelations 

Table 5.B1  

Correlation analyses between the administered measures in 8-9-year-olds (Grade 3; Study 1) 

      1a 1b 1c 2a 2b 2c 3a 3b 4 

A
ri

th
m

et
ic

 

C
u

st
o
m

 t
as

k
 1a. Arithmetic ACC -         

1b. Arithmetic RT          

r .12         

p .14 -        

BF10 0.31 -        

S
ta

n
d

ar
d
iz

ed
 

ta
sk

 

1c. TTA          

r .26 -.71 -       

p .001 <.001 -       

BF10 16.85 >100 -       

S
p

el
li

n
g
 

C
u
st

o
m

 t
as

k
 

2a. Spelling ACC          

r .44 -.18 .33 -      

p <.001 .03 <.001 -      

BF10 >100 1.05 >100 -      

2b. Spelling RT          

r .22 .52 -.33 -.04 -     

p .005 <.001 <.001 .60 -     

BF10 3.49 >100 >100 0.12 -     

S
ta

n
d

ar
d
iz

ed
 

ta
sk

 

2c. Dictation          

r .33 -.29 .39 .75 -.24 -    

p <.001 <.001 <.001 <.001 .004 -    

BF10 >100 42.30 >100 >100 6.45 -    

M
et

a
co

g
n

it
iv

e 

m
o
n

it
o
ri

n
g
 

 

3a. MMarith          

r .89 .00 .40 .47 .15 .37 -   

p <.001 .99 <.001 <.001 .08 <.001 -   

BF10 >100 0.10 >100 >100 0.46 >100 -   

3b. MMspell          

r .52 -.18 .37 .92 -.05 .73 .58 -  

p <.001 .03 <.001 <.001 .56 <.001 <.001 -  

BF10 >100 1.14 >100 >100 0.12 >100 >100 -  

C
o

n
tr

o
l 

v
a

ri
a

b
le

s 

In
te

ll
ec

tu
al

 

ab
il

it
y
 4. Raven          

r .19 -.02 .16 .34 -.01 .28 .25 .31 - 

p .03 .81 .05 <.001 .91 <.001 .003 <.001 - 

BF10 1.20 0.11 0.66 >100 0.11 29.26 8.22 >100 - 

M
o

to
r 

sp
ee

d
 5. Motor speed task 

RT 
         

r .20 .47 -.32 .00 .33 -.08 .13 .01 -.08 

p .02 <.001 <.001 .99 <.001 .33 .13 .94 .35 

BF10 1.59 >100 >100 0.10 >100 0.17 0.33 0.10 0.16 

Note. ACC = accuracy; RT = response time for the correct answers; TTA = Tempo Test Arithmetic; MMarith = 

metacognitive monitoring in the arithmetic task; MMspell = metacognitive monitoring in the spelling task. 

  



M e t a c o g n i t i o n  a c r o s s  d o m a i n s  | 151 

 

 

 

5 

Table 5.B2  

Correlation analyses between the administered measures in 7-8-year-olds (Grade 2; Study 2) 

      1a 1b 1c 2a 2b 2c 3a 3b 4 

A
ri

th
m

et
ic

 

C
u

st
o
m

 t
as

k
 1a. Arithmetic ACC -         

1b. Arithmetic RT          

r .46 -        

p <.001 -        

BF10 >100 -        

S
ta

n
d
ar

d
iz

ed
 

ta
sk

 

1c. TTA          

r .45 -.05 -       

p <.001 .70 -       

BF10 >100 0.17 -       

S
p

el
li

n
g
 

C
u

st
o
m

 t
as

k
 

2a. Spelling ACC          

r .15 .05 .13 -      

p .22 .70 .28 -      

BF10 0.31 0.16 0.27 -      

2b. Spelling RT          

r .01 .33 -.20 -.06 -     

p .92 .004 .11 .62 -     

BF10 0.15 7.75 0.55 .16 -     

S
ta

n
d

ar
d

iz

ed
 t

as
k

 2c. Dictation          

r .28 .20 .24 .28 -.05 -    

p .02 .11 .05 .02 .69 -    

BF10 1.91 0.55 0.96 2.16 .17 -    

M
et

a
co

g
n

it
iv

e 

m
o
n

it
o
ri

n
g
 

 

3a. MMarith          

r .80 .37 .47 .19 .09 .28 -   

p <.001 .001 <.001 .11 .46 .02 -   

BF10 >100 20.90 >100 0.53 0.19 1.87 -   

3b. MMspell          

r .18 .19 .08 .90 .02 .36 .26 -  

p .12 .11 .51 <.001 .84 .003 .03 -  

BF10 0.48 0.52 0.19 >100 0.15 13.07 1.64 -  

C
o

n
tr

o
l 

v
a
ri

a
b

le
s 

In
te

ll
ec

tu
al

 

ab
il

it
y
 4. Raven          

r .46 .27 .12 .21 -.05 .24 .44 .28 - 

p <.001 .03 .33 .10 .67 .05 <.001 .02 - 

BF10 >100 1.49 0.24 0.60 0.17 1.06 131.5 2.06 - 

M
o

to
r 

sp
ee

d
 5. Motor speed task 

RT 
         

r .02 .25 -.43 -.17 .35 -.13 .05 -.13 -.31 

p .87 .04 <.001 .14 .002 .29 .69 .26 .01 

BF10 0.15 1.16 73.64 0.42 15.17 0.27 0.16 0.27 3.32 

Note. ACC = accuracy; RT = response time for the correct answers; TTA = Tempo Test Arithmetic; MMarith = 

metacognitive monitoring in the arithmetic task; MMspell = metacognitive monitoring in the spelling task. 
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3 Appendix C – Analyses with chronological age 

Although not originally pre-registered, we additionally calculated the analyses presented in the 

manuscript with chronological age as an additional control variable. Pearson correlation coefficients 

were calculated between age and academic and metacognitive performance measures in both grades (see 

table 5.C1 below). The associations between age and the other metrics were not statistically significant, 

and Bayes factors were all below 0.43, consequently pointing to evidence for the null hypotheses of no 

association between age and the variables under investigation. In line with the lack of significant 

correlations with age, post-hoc defined partial correlations and regression models to control for shared 

variance across age and the other metrics (see Tables C2-C6) indicate that including chronological age 

in the analyses does not change the interpretation of the current results. 
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Table 5.C1  

Correlation analyses of chronological age and academic and metacognitive performance measures in 

both grades 

 Study 1 - Grade 3 Study 2 - Grade 2 

 Age Age 

   

Arithmetic performance   

Custom task   

Accuracy   

r -.07 .15 

p .44 .22 

BF10 0.14 0.31 

Response time   

r -.09 -.09 

p .28 .46 

BF10 0.19 0.19 

Standardized task   

r .06 .18 

p .46 .15 

BF10 0.13 0.42 

Spelling performance   

Custom task   

Accuracy .07 -.14 

r .43 .26 

p 0.15 0.28 

BF10   

Response time   

r -.13 -.13 

p .12 .29 

BF10 0.36 0.25 

Standardized task   

r .06 .01 

p .46 .94 

BF10 0.14 0.15 

Metacognitive Monitoring   

Arithmetic   

r -.14 .07 

p .11 .59 

BF10 0.37 0.17 

Spelling   

r -.01 -.13 

p .87 .28 

BF10 0.11 0.26 
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Table 5.C2   

Partial correlations of metacognitive monitoring and academic performance measures in 8-9-year-olds 

(Grade 3) 

 Arithmetic Spelling 

 Custom 

task – 

Accuracy a 

Custom 

task - 

RT b 

Standardized 

task (TTA) a 

Custom 

task – 

Accuracy a 

Custom 

task -

RT b 

Standardized 

task 

(dictation) a 

Metacognitive 

monitoring 

      

Arithmetic       

r .86 -.05 .43 .53 .11 .35 

p <.001 .53 <.001 <.001 .22 <.001 

BF10 >100 0.13 >100 >100 0.23 >100 

Spelling       

r .53 -.15 .38 .93 -.04 .71 

p <.001 .09 <.001 <.001 .68 <.001 

BF10 >100 0.45 >100 >100 0.12 >100 
Note. All correlations are additionally controlled for chronological age. a Controlled for intellectual ability; b 

Controlled for intellectual ability and motor speed on the keyboard. 

 

 

Table 5.C3  

Partial correlations of metacognitive monitoring and academic performance measures in 7-8-year-olds 

(Grade 2) 

 Arithmetic Spelling 

 Custom 

task – 

Accuracy a 

Custom 

task - 

RT b 

Standardized 

task (TTA) a 

Custom 

task – 

Accuracy a 

Custom 

task -

RT b 

Standardized 

task 

(dictation) a 

Metacognitive 

monitoring 

      

Arithmetic       

r .80 .37 .46 .16 .08 .17 

p <.001 .001 <.001 .23 .52 .18 

BF10 >100 20.31 >100 0.32 0.20 0.38 

Spelling       

r .06 .11 .11 .89 -.01 .36 

p .66 .42 .39 <.001 .92 .003 

BF10 0.17 0.22 0.22 >100 0.16 11.93 
Note. All correlations are additionally controlled for chronological age. a Controlled for intellectual ability; b 

Controlled for intellectual ability and motor speed on the keyboard. 
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Table 5.C4   

Partial correlations of metacognitive monitoring measures 

 Study 1 – Grade 3 Study 2 – Grade 2 

 Metacognitive monitoring 

Spelling 

Metacognitive monitoring 

Spelling 

Metacognitive monitoring 

Arithmetic 

  

r .41 a .17 b 

p <.001 .19 

BF10 >100 0.37 
Note. a Partial correlation controlled for intellectual ability, arithmetic and spelling performance on the 

standardized tasks and chronological age; b Partial correlation controlled for intellectual ability and chronological 

age. 

 

Table 5.C5  

Regression analyses of MMarith and MMspell performance with metacognitive monitoring in the other 

domain, standardized task performance in both domains and chronological age as predictors (Grade 3) 

 MMarith 

 β t p BFinclusion 

Age -.12 -1.77 .08 2.04 

Intellectual ability .14 1.91 .06 2.12 

TTA .27 3.68 <.001 84.62 

Dictation  -.12 -1.18 .24 1.06 

MMspell .49 4.93 <.001 >100 

 MMspell 

 β t p BFinclusion 

Age .01 0.21 .84 0.19 

Intellectual ability .08 1.28 .20 0.36 

Dictation  .55 8.49 <.001 >100 

TTA -.001 -0.01 .99 0.19 

MMarith  .34 4.93 <.001 >100 
Note. TTA = Tempo Test Arithmetic; MMarith = metacognitive monitoring in the arithmetic task; MMspell = 

metacognitive monitoring in the spelling task.  
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Table 5.C6   

Regression analyses of arithmetic performance (i.e. arithmeticacc and TTA) and spelling performance 

(i.e. spellingacc and dictation) with metacognitive monitoring in the other domain, standardized task 

performance in the other domain and chronological age as predictors (Grade 3) 

 Arithmetic 

 Arithmeticacc TTA 

 β t p BFinclusion β t p BFinclusion 

Age -.04 -0.52 .61 0.29 .04 0.48 .63 0.42 

MMspell .53 4.99 <.001 >100 .22 1.95 .05 3.19 

Dictation -.07 -0.64 .53 0.30 .19 1.68 .10 1.83 

 Spelling 

 Spellingacc Dictation 

 β t p BFinclusion β t p BFinclusion 

Age .13 1.75 .08 1.24 .10 1.18 .24 1.14 

MMarith .50 6.06 <.001 >100 .25 2.80 .006 10.16 

TTA .09 1.15 .25 0.68 .23 2.63 .01 11.67 
Note. MMarith = metacognitive monitoring in the arithmetic task; MMspell = metacognitive monitoring in the 

spelling task; TTA = Tempo Test Arithmetic. 
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Supplemental Materials 

In these supplementary materials, all remaining preregistered analyses for both studies that were not 

reported on in the main body of the manuscript are presented. 

1 Study 1 

1.1 Preliminary correlation analyses 

As a validity check, we first verified whether the performance measures of the custom tasks that we 

made for this study were correlated with the widely-used standardized arithmetic and spelling tasks that 

we utilized (i.e. TTA and dictation). This was the case for both the accuracy (arithmetic: r = .257, p = 

.002; spelling: r = .748, p < .001) and the response time for correct answers (arithmetic: r = -.709, p < 

.001; spelling: r = -.248, p = .003). 

1.2 General metacognitive knowledge 

1.2.1 Method. 

To measure metacognitive abilities independently of arithmetic and spelling, we used a general 

metacognitive questionnaire (adapted from Haberkorn, Lockl, Pohl, Ebert, & Weinert, 2014). In this 

questionnaire, 15 situations involving mental performance (e.g. Which strategy do you think is better to 

make sure you won’t forget to take your skates to school the next day?) were described and three possible 

answers (e.g. a. Write a note on a piece of paper; b. Think strongly about the skates; c. Both proposed 

strategies are equally good/bad) were presented. The researcher read the situations and the 

corresponding options aloud one by one. Children were given a response form with pictures of the three 

possible answers, so they could follow each item and indicate their answer. The performance measure 

was the number of correct answers. The mean score on the general metacognitive knowledge 

questionnaire was 10.70 (SD = 2.35; range [4.00-15.00]). 

The preregistered analyses involving the general metacognitive knowledge questionnaire are 

presented below.  

 

1.2.2 Associations of academic performance and general metacognitive knowledge. 

The general metacognitive knowledge questionnaire (MCknow) was not significantly associated with 

the arithmetic and spelling measures. For the arithmetic measures, the Bayes factors indicated moderate 

evidence in favour of no association with Arithmeticrt and the TTA; there was no considerable evidence 

in favour of or against an association with Arithmeticacc. For the spelling measures, the Bayes factors 

indicated moderate evidence in favour of no association with Spellingacc and Spellingrt; there was no 

considerable evidence in favour of or against an association with dictation.  
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Table 5.S1  

Correlation analyses of metacognition measures and academic performance measures in 8-9-year-olds 

(Grade 3) 

 Arithmetic Spelling 

 Custom 

task – 

Accuracy a 

Custom 

task - 

RT b 

Standardized 

task (TTA) a 

Custom 

task – 

Accuracy a 

Custom 

task -

RT b 

Standardized 

task 

(dictation) a 

Metacognitive 

knowledge 

      

r .14 -.02 .06 .12 .03 .15 

p .12 .81 .50 .17 .75 .08 

BF10 0.36 0.11 0.13 0.27 0.11 0.49 
Note. a Controlled for intellectual ability; b Controlled for intellectual ability and motor speed. 

 

1.2.3 The unique role in academic performance of metacognitive monitoring within- and across-

domain and metacognitive knowledge. 

The correlation analyses show significant associations between our academic performance measures 

and metacognitive monitoring within the domain, in contrast to no significant correlations and 

(moderate) evidence in favour of no associations of the academic performance measures and general 

metacognitive knowledge. Comparing the strength of the associations confirms this pattern: For every 

performance measure, the strength of the association with metacognitive monitoring within the domain 

was significantly larger than the strength of the association with general metacognitive knowledge 

(William-Steiger tests; all p’s < .001).  

Regression analyses were performed to assess the unique contribution of our different metacognitive 

measures (i.e. metacognitive monitoring within- and across-domain and general metacognitive 

knowledge) to arithmetic and spelling performance. Therefore, all metacognitive measures were 

simultaneously entered into the regression models, together with intellectual ability as a control measure 

(Table 5.S2). For every model, all variance inflation factors (VIF) were smaller than 1.60, indicating no 

issues with collinearity among predictors.  
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Table 5.S2  

Regression analyses of arithmetic and spelling performance with metacognitive monitoring within- and 

cross-domain, MCknow and intellectual ability as predictors 

 Arithmetic Spelling 

 Arithmeticacc Standardized task 

(TTA) 

Spellingacc Standardized task 

(dictation) 

 β t p 
BF 

inclusion 
β t p 

BF 

inclusion 
β t p 

BF 

inclusion 
β t p 

BF 

inclusion 

MMarith
 

.83 15.06 <.001 >100 .33 3.36 .001 97.81 -.04 -0.98 .33 0.06 
-

.05 
-0.67 .51 0.18 

MMspell .04 0.69 .50 0.09 .15 1.52 .13 0.70 .93 23.11 <.001 >100 .69 8.91 <.001 >100 

MCknow .08 1.88 .06 0.33 
-

.01 
-0.17 .87 0.28 .02 0.76 .45 0.06 .10 1.63 .11 0.43 

Intellectual 

ability 
-.01 -0.12 .90 0.07 .02 0.26 .80 0.30 .04 1.23 .22 0.08 .09 1.38 .17 0.30 

Note. MMarith = metacognitive monitoring in the arithmetic task; MMspell = metacognitive monitoring in the 

spelling task. 

These results show that when metacognitive monitoring within- and across-domain, and general 

metacognitive knowledge were considered simultaneously, only the role of metacognitive monitoring 

within the domain itself remained significant (frequentist statistics) or supported (Bayesian statistics) 

for each academic performance measure (i.e. Arithmeticacc, Spellingacc, TTA, dictation). 

 

1.2.4 Discussion. 

Whereas the lack of a significant/supported association of academic performance with MCknow 

suggests that domain-generality of metacognition might be limited to metacognitive monitoring within 

the academic domains, it is important to note some characteristics of this study that might limit this 

interpretation of the specificity of metacognition. The current study included two aspects of 

metacognition, namely declarative, general metacognitive knowledge (MCknow) and an aspect of 

procedural metacognition (i.e. metacognitive monitoring; MMarith and MMspell). In all above-mentioned 

results, the role of metacognitive monitoring surpasses the role of general metacognitive knowledge in 

academic performance. Firstly, this difference in results could be due to a difference in the cognitive 

process, namely declarative vs. procedural metacognition. It is not surprising that different aspects of 

metacognition follow different developmental paths (Schneider & Löffler, 2016) and are differently 

associated with domain-specific skills. To further investigate whether this difference in results is indeed 

due to a difference in metacognitive processes, future studies should not only include domain-general 

declarative metacognitive knowledge, but also measures of domain-specific, declarative metacognitive 

knowledge. Secondly, the difference in results between metacognitive monitoring and declarative 

metacognitive knowledge could be due to a difference in performance measures that were used to 

measure these skills. The general metacognitive knowledge questionnaire (used to measure declarative, 

general metacognitive knowledge), while being a validated measure, differs in two considerable ways 

from our monitoring measure, which was online and more detailed (i.e. on a trial-by-trial basis). These 
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aspects of the current study could limit the interpretation of the specificity of metacognition outside the 

academic domains and outside of metacognitive monitoring. Drawing on our results, future research 

should include measures of both metacognitive monitoring and control (i.e. both aspects of procedural 

metacognition) and general as well as domain-specific declarative metacognitive knowledge (e.g. 

Neuenhaus, Artelt, Lingel, & Schneider, 2011) to further investigate the domain-specificity question of 

metacognition. 

 

1.3 Academic-domain-related differences in the role of metacognitive monitoring 

We investigated whether there were academic-domain-related differences (i.e. differences between 

arithmetic and spelling) in the (strength of the) role of metacognition (i.e. task-specific metacognitive 

monitoring on the one hand and general metacognitive knowledge on the other). 

Our results show that there were differences in the strength of the role of metacognitive monitoring 

depending on the domain. Using the Fisher r-to-z transformation, we found that the association between 

MMspell and Spellingacc was significantly larger than the association between MMarith and Arithmeticacc 

(p = .014). This was also the case for the standardized task, with the association between MMspell and 

dictation being significantly larger than the association between MMarith and the TTA (p = .001). There 

were no significant differences between the domains in the strength of the associations with MCknow. 

 

2 Study 2 

2.1 Preliminary correlation analyses 

The same validity tests were performed as in Study 1, showing that for accuracy (arithmetic: r = .46, 

p < .001, BF10 > 100; spelling: r = .28, p = .02, BF10 = 2.16) performance on the custom task was 

correlated with the standardized task. For response time for correct answers (arithmetic: r = -.05, p = 

.70, BF10 = 0.17; spelling: r = -.05, p = .69, BF10 = 0.17) this was not the case. 

2.2 General metacognitive knowledge 

The preregistered analyses involving the general metacognitive knowledge questionnaire in Grade 2 

are presented below. The mean score on the general metacognitive knowledge questionnaire was 6.65 

(SD = 2.44; range [1.00-11.00]). 
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2.2.1 Associations of academic performance and general metacognitive knowledge. 

The general metacognitive knowledge questionnaire (MCknow) was not significantly associated with 

the arithmetic and spelling measures. Bayes factors indicated moderated evidence in favour of no 

association with both response time measures, and for Spellingacc and dictation. There was only 

anecdotal evidence for no association with Arithmeticacc and TTA.  

Based on the lack of significant/supported associations, no further analyses were performed. 

 

Table 5.S3  

Correlation analyses of metacognition measures and academic performance measures in 7-8-year-olds 

(Grade 2) 

 Arithmetic Spelling 

 Custom 

task – 

Accuracy a 

Custom 

task - 

RT b 

Standardized 

task (TTA) a 

Custom 

task – 

Accuracy a 

Custom 

task -

RT b 

Standardized 

task 

(dictation) a 

Metacognitive 

knowledge 

      

r .21 .05 .23 .10 .03 .05 

p .09 .68 .07 .43 .84 .71 

BF10 0.62 0.16 0.79 0.21 0.16 0.16 

 

 

2.3 Academic-domain-related differences in the role of metacognition 

We investigated whether there were academic-domain-related differences (i.e. differences between 

arithmetic and spelling) in the (strength of the) role of metacognition (i.e. task-specific metacognitive 

monitoring on the one hand and general metacognitive knowledge on the other). 

Our results show that there were almost no differences in the strength of the role of metacognitive 

monitoring depending on the domain. Using the Fisher r-to-z transformation, we found that only the 

association between MMspell and Spellingacc was significantly larger than the association between MMarith 

and Arithmeticacc (p = .005). There were no other significant differences between the domains in the 

strength of the associations with metacognition. 



 

 

 

 

 



 

 

 

 

 

 

 

 

CHAPTER 6 

  Metacognition in children’s brains 

The neurobiological basis of metacognitive monitoring  

during arithmetic in the developing brain. 

 

 

 

 

 

 

 

 

 

 

 

 

The content of this chapter is under revision as:  

Bellon, E., Fias, W., & De Smedt, B. (Under Revision). Metacognition in children’s brains. The 

neurobiological basis of metacognitive monitoring during arithmetic in the developing brain. 

Human Brain Mapping. 
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Chapter 6 

Metacognition in children’s brains 

The neurobiological basis of metacognitive 

monitoring during arithmetic in the developing 

brain. 

 

Abstract 

In contrast to a substantial body of research on the neurobiological basis of cognitive performance in 

several academic domains, less is known about how the brain generates metacognitive awareness of 

such performance. The existing work on the neurobiological underpinnings of metacognition has almost 

exclusively been done in adults and has largely focused on lower level cognitive processing domains, 

such as perceptual decision making. Extending this body of evidence, we investigated metacognitive 

monitoring by asking children to solve arithmetic problems, an educationally relevant higher-order 

process, while providing concurrent metacognitive reports during fMRI acquisition. This was done in a 

sample of 55 primary school children aged 9-10-years-old. The current study is the first to demonstrate 

that brain activity during metacognitive monitoring, relative to the control task, increased in the left 

inferior frontal gyrus in children. This brain activity further correlated with children’s arithmetic 

development over a three year time period. These data are in line with the frequently suggested, yet 

never empirically tested, hypothesis that activity in the prefrontal cortex during arithmetic is related to 

the higher-order process of metacognitive monitoring. 
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Introduction 

Cognitive neuroscience has made considerable progress in understanding the neurobiological basis 

of cognitive performance in several academic domains, such as arithmetic. Much less is known, 

however, about how the brain generates metacognitive awareness of task performance (Fleming & 

Dolan, 2012) during academic performance. Understanding the neurobiological basis of metacognition 

is essential, as this higher-order process supports reflection upon and control of other cognitive 

processes, and occupies a central role in human cognition (Flavell, 1979). Age-related improvements in 

children’s ability to monitor and regulate their mental operations are widely recognized to be a driving 

force in cognitive development, underlying age-related improvements in accuracy on a wide variety of 

tasks (e.g. Lyons & Ghetti, 2010), such as arithmetic (Rinne & Mazzocco, 2014). In view of the 

extensive behavioural work on the importance of metacognition in academic performance (e.g. Roebers 

et al., 2012; Schneider & Artelt, 2010; Schraw et al., 2006), there is a need to further our understanding 

of metacognitive processes in the context of academic skills at the level of the brain. 

Metacognition is considered a higher brain function that strongly depends on the prefrontal cortex or 

PFC (see Pannu & Kaszniak, 2005, and Shimamura, 2000, for reviews). Adult studies on the 

neurobiological correlates of metacognitive judgments across different tasks have pointed to a consistent 

involvement of a fronto-parietal network (e.g. Fleming & Dolan, 2014; see Vaccaro & Fleming, 2018, 

for a meta-analysis). There are, however, three critical limitations in the current literature on the 

neurobiological underpinnings of metacognition that motivated the current study. Firstly, and to the best 

of our knowledge, the existing body of data is solely based on adult studies. Therefore, the results cannot 

be generalized to the neurobiological basis of metacognition in children without thorough empirical 

investigation. Secondly, this adult work has almost exclusively been done in lower level cognitive 

processing domains, such as perceptual decision making (e.g. Fleming et al., 2012; Fleming & Dolan, 

2014; Shimamura, 2000; Vaccaro & Fleming, 2018). Yet, there is evidence to suggest that there is 

specificity, i.e. regional specialization within the PFC, concerning the neurobiological basis of 

metacognition with respect to metacognitive processes in different tasks and domains (e.g. Baird et al., 

2013; McCurdy et al., 2013). Hitherto, it remains unknown what the neurobiological correlates of 

metacognition on high-level cognitive processing are. Thirdly, Vaccaro and Fleming (2018) indicated 

that some aspects of the neurobiological basis of metacognition have been overlooked. Most research 

has focused on brain activity related to metacognitive confidence judgements in task performance or 

related to the extent to which a metacognitive judgment effectively tracks task performance (i.e. 

metacognitive ability). Yet, the fundamental question of which brain regions are involved in engaging 

in a metacognitive monitoring task regardless of participants’ behavioural performance (in other words, 

the level of confidence that participants indicate or their metacognitive ability) has been neglected. 

Answering this question is crucial to understand the underlying neurocognitive architecture supporting 
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metacognitive abilities. This was precisely the aim of the current study. We therefore examined 

metacognitive judgment-related activity in itself, namely activation that results from contrasts 

comparing the requirement of metacognitive judgment against a control condition.  

The current study tackles these important issues by investigating them for the first time in children. 

We investigated which brain region(s) are active when engaging in a metacognitive monitoring task 

through the use of retrospective metacognitive monitoring judgments in a higher-level cognitive process, 

namely arithmetic. 

Investigating the brain activity during metacognitive monitoring of arithmetic also adds to the 

existing body of developmental brain imaging studies that have studied brain activity during arithmetic 

(Arsalidou et al., 2018, for a meta-analysis; Peters and De Smedt, 2017, for a systematic review), as this 

might lead to a better understanding of the activity in prefrontal regions which has been consistently 

observed during arithmetic. Indeed, it has been frequently suggested that this prefrontal activation during 

arithmetic reflects metacognitive monitoring as well as working memory load or goal-directed problem 

solving (e.g. Ansari et al., 2005; Arsalidou et al., 2018; Houdé et al., 2010; Kaufmann et al., 2006, 2011; 

Kucian et al., 2008; Menon, 2015; Rivera et al., 2005). However, this suggestion that the control 

networks that are active during arithmetic might point, at least partially, to the involvement of 

metacognitive processes, has never been empirically tested.  

This suggestion is not far-fetched as behavioural work has revealed that metacognitive monitoring is 

a unique predictor of individual differences in arithmetic in children (Bellon et al., 2019; Rinne and 

Mazzocco, 2014). Interestingly, Ansari et al. (2011) showed in adults that medial and lateral regions of 

the PFC were correlated with the detection of arithmetic errors and deployment of control following an 

arithmetic error. These authors suggested that activation of these regions might suggest greater 

awareness of mistakes during calculation, pointing to the role of metacognition. 

In sum, the current study is the first to empirically investigate which brain regions are involved in 

engaging in metacognitive monitoring within a higher-order cognitive processing domain (i.e. 

arithmetic), and to do so in primary school children. Investigating this also sheds light on the frequently 

suggested, but never empirically tested hypothesis that metacognitive monitoring processes, which were 

found to be an important predictor of arithmetic skills in behavioural research, could partially explain 

the increases in prefrontal activation that are often observed when doing arithmetic. 

We examined these questions in primary school children aged 9-10 as they are in the midst of an 

important developmental period of both arithmetic (e.g. Vanbinst, Ceulemans, et al., 2015) and 

metacognition (e.g. Schneider, 2010). Children participated in an fMRI experiment in which they were 

asked to solve arithmetic problems and to answer either metacognitive questions (i.e. experimental 

condition) or to make a colour judgement (i.e. control condition) while they were in the scanner. To 

further explore the association between brain activity during metacognitive monitoring and children’s 
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arithmetic development, we specifically recruited children that took part in a larger longitudinal 

behavioural project in which developmental arithmetic data were collected. This allowed us to explore 

associations between children’s brain activity during metacognitive monitoring and their arithmetic 

development. 

Method 

1 Participants 

Participants were 55 children (30 girls; 2 left-handed), aged 9 to 10 years old (Mage = 10 years 2 

months, SD = 3 months, [9 years 7 months - 10 years 7 months]). After correction for movement in the 

scanner (see below), the final sample consisted of 50 participants. All children were recruited from an 

ongoing 3-year-longitudinal study on the role of metacognitive monitoring in arithmetic (Bellon et al., 

2019). They were all typically developing children, who had no diagnosis of a developmental disorder, 

nor reported a history of psychiatric or neurological illness. They had normal or corrected-to-normal 

vision, and a dominantly middle-to-high socioeconomic background. For every participant, written 

informed parental consent was obtained. In return for participating, all children were given a financial 

compensation. The study was approved by the Medical Ethical Committee of KU Leuven (S59167). 

2 Procedure 

Each child participated in two sessions. During the first session, children were extensively informed 

about the scanning procedure. They were familiarized with the MRI environment and procedures using 

a mock scanner in which every step of the MRI procedure was practiced while the noise of the scanner 

was simulated. They also completed an arithmetic fluency test (see below). Additionally, an extensive 

cognitive test battery was administered, as part of an ongoing longitudinal study in which these children 

participated, including executive functioning, numerical magnitude processing, reading ability and 

mathematics anxiety. The data from this behavioural test battery were not considered for the current 

study. During the second session, brain imaging data were collected. Both functional data (during an 

arithmetic task) and structural data were acquired (for scanning parameters see below). The full MRI-

protocol lasted approximately 50 minutes. 

3 Imaging task 

An arithmetic task was performed by the children in the scanner. This task was specifically designed 

to tap into both arithmetic and metacognitive processes, using a specific protocol adapted from recent 

behavioural research (Bellon et al., 2019; Rinne & Mazzocco, 2014). Similar metacognitive protocols 

have also been used in adult neuro-imaging research (e.g. Chua et al., 2009; Fleming et al., 2012; 

Hilgenstock et al., 2014). An overview of the arithmetic task, including its timing is illustrated in Figure 

6.1. The task was presented across five functional runs in a block fMRI design. In each run, 30 

multiplication items were presented in which children were asked to indicate which of the two presented 
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solutions (i.e. one on either side of the screen) was correct. Two conditions were administered (i.e. 

experimental condition and control condition, see Figure 6.2) within each run. Each run was divided 

into six blocks: experimental (n = 3) and control (n = 3) blocks were alternated. A block comprised of a 

long fixation (15s), an indication of which condition would follow (1000 ms), five arithmetic trials of 

the same condition (35s) and an end fixation (15s); see Figure 6.3. Each arithmetic trial consisted of a 

short fixation (200 ms), a presentation of the multiplication item and a response screen (in total 4300 

ms), a short black screen (100 ms) and an additional question depending on the condition (2500 ms). A 

multiplication item consisted of the presentation of the arithmetic problem (2000 ms), the presentation 

of a white equality sign (100 ms), the presentation of a coloured equality sign and two solutions to the 

arithmetic problem (i.e. one lure and one correct solution; 2100 ms), and a black screen (100 ms). 

Children answered using buttons on a response box corresponding to the location of the response options 

on the screen. The duration of each run was approximately 5 minutes. 

Each participant was presented with a set of 150 multiplication items. Multiplication was chosen as 

arithmetic operation of interest to ensure considerable inter- and intra-individual variability in 

performance by using items of different difficulty levels, while still using a task with which children 

were very familiar, and which was as ecologically valid as possible. To maximize variability in both 

arithmetic performance and metacognition processes (experimental condition, see below) a wide range 

of multiplication items was included, ranging from easy items (n = 50; i.e. single-digit multiplications 

items with 0-1 and 2-9 as operands, and single times double digit items with 0-1 or 10-11 and 12-19 or 

2-9, respectively, as operands) over standard multiplication tables (n = 50; i.e. single-digit 

multiplications with 2-9 as operands) to hard items (n = 50; i.e. single- times double-digit multiplications 

with 2-9 and 12-19 as operands). We did not include ties, standard single-digit items that were 

considered ‘too easy’ (i.e. 2x3, 2x4, 3x4 and their commutative pairs), and hard items that were 

considered ‘too difficult’ (i.e. operands 17-19 combined with operands 7-9). In each run, the same 

number of single-digit items as well as single- times double-digit items was presented. The number of 

times a specific operand was presented in one run was equally distributed across runs. Commutative 

pairs were never presented within the same run.  

All multiplication items were presented horizontally, in white (Calibri, font size 80) on a black 

background and in Arabic digits. On presentation of the two solutions to the arithmetic problem, the 

children were asked to indicate where the correct solution was presented by pressing the leftmost or 

rightmost button on the response boxes for the left or right response alternatives, respectively. Lure 

solutions were one of five possible categories, namely the correct solution plus or minus the value of 

the largest operand, the correct solution plus or minus the value of the smallest operand or the solution 

to the corresponding addition. As a result, most of the proposed incorrect solutions were table related 

products. Lures from each category were evenly distributed over blocks and conditions. The position of 

the correct answer was balanced. 
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Figure 6.1 Schematic overview of the arithmetic task. (A) Overview of run; (B) Overview of block; (C) 

Overview of trial. 
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To truly isolate the act of engaging in metacognitive processes, two conditions were created, namely 

an experimental condition in which a metacognitive question was asked after the arithmetic item, and a 

control condition, in which every aspect of the arithmetic task was identical, and only the nature of the 

question that was asked after the arithmetic item differed. In this control condition, a question on colour 

was asked. 

3.1 Experimental condition: Metacognitive question 

In the metacognitive condition, after each arithmetic item children were asked to report their 

judgment on the accuracy of their arithmetic answer, by indicating whether they thought their answer 

was “Correct”, “Incorrect” or whether they “Did not know”. We used emoticons in combination with 

the options to make the task more attractive and feasible for the children (see Figure 6.2 left panel). The 

participating children were very familiar with this task, as they already participated in an ongoing 

longitudinal study in which this protocol to assess metacognitive monitoring was used (Bellon et al., 

2019). 

3.2 Control condition: colour question 

In the control condition, after each arithmetic item, children were asked which of three colours the 

equality sign (presented simultaneously with the two solutions) had. Importantly, the equal sign was 

coloured in both conditions, to make conditions as similar as possible. Only in the control condition 

children were asked to report on the colour (see Figure 6.2 right panel). This specific control condition 

was used to engage similar memory processes as during the metacognitive judgment (i.e. both involve 

thinking back), yet the content of the cognitive process was entirely different, as in the metacognitive 

condition the children think back to their own performance, while in the colour condition they have to 

remember the colour they saw. 

Taken together, the two conditions were exactly the same in terms of timing, nature of the stimuli 

and arithmetic task. The only difference between them was that in the experimental condition they had 

to make a judgement on their own performance on the item, while in the control condition they had to 

make a judgement about colour of the item. 

 

Figure 6.2. Screen presented for the experimental condition: Metacognitive question (left); Screen 

presented for the control condition: Colour question (right). 



172 | C h a p t e r  6  

 

 

 

6 

In Figure 6.3, an overview of a block in both conditions is presented, in which detailed information 

of the course of an arithmetic item can be found. 

 

Figure 6.3. Overview of a block in the experimental (A) and control (B) condition. 
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Stimuli were presented using a script written in MATLAB (The MathWorks Inc., 2018), displayed 

using PsychToolbox 3 (Brainard, 1997), via a projector (NEC Display Solutions) onto a screen, which 

was made visible through a mirror attached to the head coil, located approximately 46cm behind the 

participants’ eyes.  

3.3 Scanning parameters 

Structural and functional images were collected via a 3.0T Philips Ingenia CX MRI Scanner with a 

SENSE 32-channel head coil, located at the Department of Radiology of the University Hospital in 

Leuven, Belgium. Soft padding was used to stabilize the children’s heads in order to minimize head 

motion. For the fMRI data, slices were recorded in ascending order, using a EPI sequence (52 slices, 

2.19 x 2.19 x 2.2mm voxel size, 2.2 mm slice thickness, 0.3mm interslice gap, TR = 3000ms, TE = 

29.8ms, 90° flip angle, 96 x 96 acquisition matrix) and covered the whole brain (field of view: 210 x 

210 x 130 mm). Each run consisted of 107 measurements. Furthermore, a high-resolution T1-weighted 

anatomical image (MPRAGE sequence, 182 slices, resolution 0.98 x 0.98 x 1.2mm³, TE = 4.6ms, 256 

x 256 acquisition matrix, 8° flip angle, 250 x 250 x 218 mm field of view) was acquired for each 

participant. 

4 Behavioural task outside the scanner 

Arithmetic fluency was assessed by the Tempo Test Arithmetic (TTA; de Vos, 1992); a standardized 

pen-and-paper test of arithmetical fluency which comprises five columns of arithmetic items (one 

column per operation and a mixed column), each increasing in difficulty. Participants got one minute 

per column to provide as many correct answers as possible. The performance measure was the total 

number of correctly solved items within the given time (i.e. total score over the five columns). 

Because all participants were enrolled in a longitudinal study (Bellon et al., 2019), performance on 

the TTA was not only available from the behavioural session that accompanied the MRI session, but 

also from when these participants were in second and third grade (i.e. 7-8 and 8-9-years-old, 

respectively). These data were further included in the current study. 

5 Data analysis 

All pre-processing was conducted with the Statistical Parametric Mapping (SPM) software package 

for MATLAB (SPM12, Wellcome Department of Cognitive Neurology, London). Functional images 

were corrected for slice-timing differences and for head motion artefacts by realigning all images to the 

mean image, and were co-registered to the high-resolution anatomical image. Both functional and 

anatomical images were normalized to the standard Montreal Neurological 152-brain average template. 

As a final pre-processing step, functional images were spatially smoothed using a Gaussian kernel of 6 

mm full-width at half maximum (FWHM).  
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To avoid a decrease in data quality due to movement during scanning, two motion criteria (see also 

Peters et al., 2018) were used to identify excessive movement during functional runs. Firstly, all runs in 

which participants moved more than one voxel size (2.2 mm) in the x-, y- or z-direction on two 

consecutive images, were discarded. Secondly, runs in which an Euclidean distance measure (i.e. an 

additive measure of the amount of motion in all directions from one time point to another), exceeded 

one voxel size, were also removed. Participants with less than three runs without excessive movement, 

were discarded in all analyses on both the imaging and behavioural data. This criterion led to the 

discarding of 5 participants, leading to a final sample of 50 children. Of these remaining participants, 

7% of the runs were discarded from the analyses due to excessive motion. 

After pre-processing, as a part of the first level analysis, the effect of the experimental condition per 

voxel was estimated by creating a general linear model per participant. Onset and duration of each block 

of each condition were modelled. These regressors were convolved with a canonical hemodynamic 

response function (HRF). The six motion realignment parameters for each subject were included as 

regressors of no interest in the general linear models, to further control for variation due to movement 

artefacts. 

To measure the neurobiological correlates of metacognitive monitoring, a ‘metacognition contrast’ 

was created in the first-level analysis by subtracting the average BOLD response of the control condition 

(i.e. colour task) from the experimental condition (i.e. metacognitive question), resulting in voxel-wise 

t-statistics maps for each participant. 

Finally, a second-level group analysis was performed on the first level contrast images of the 

‘metacognition contrast’ using a one-sample t-test to identify brain regions with higher activity during 

metacognitive judgment than during the control condition. We studied activation at a whole brain level, 

threshold of p < .05 after family wise error or FWE correction, to control for multiple comparisons. 

Anatomical labels of results were defined using the xjView toolbox for SPM 

(https://www.alivelearn.net/xjview). 

To further understand the results of the metacognitive contrast, functionally defined region(s) of 

interest (ROI) were generated from significantly activated cluster(s) in this contrast, using the Marsbar 

toolbox for MATLAB (Brett et al., 2002). From the ROI(s), we extracted the contrast estimates of the 

metacognitive contrast, also using Marsbar. High values indicated a large difference between the 

activation in the metacognitive condition versus the control condition. These contrast estimates were 

then used for examining brain-behaviour correlations.  

As in the adult literature specific regions were found depending on the studied metacognitive aspect 

(e.g. judgment-related activity, judgment level or metacognitive monitoring ability; Vaccaro & Fleming, 

2018), we firstly explored whether the activation found for engaging in metacognitive thought (i.e. 

judgment-related activity) was correlated with these other metacognitive aspects (i.e. absolute 
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metacognitive judgment and metacognitive monitoring ability), which were inferred from the 

behavioural data of in-scanner performance (for scoring see Table 6.1). Pearson correlations were 

calculated between the contrast estimates of the metacognitive contrast and the different metacognitive 

aspects, i.e. absolute metacognitive judgment and metacognitive monitoring ability.  

Secondly, against the background of behavioural research in which metacognitive monitoring was 

an important predictor of arithmetic performance, we further explored whether the activation found for 

engaging in metacognitive thought was associated with children’s arithmetic and its development. 

Therefore, we used developmental behavioural data from the longitudinal study in which these children 

were enrolled (Bellon et al., 2019). Specifically, children’s score on the TTA was used as an indicator 

of their arithmetic fluency, which were collected at each time point (grade 2, grade 3 and grade 4). From 

these data, a linear regression was calculated to predict their arithmetic fluency. For each individual we 

derived an intercept and slope, which reflected the starting level and the change over time, respectively. 

These behavioural measures were subsequently correlated with the extracted contrast estimates of the 

metacognitive contrast.  

 

Results 

1 In-scanner behavioural results 

In-scanner behavioural results were only analysed for runs that were included in the imaging 

analyses. Descriptive statistics of the in-scanner behavioural results are displayed in Table 6.1. 

To verify whether the two conditions of the arithmetic task in the scanner (i.e. metacognitive (MC) 

condition and colour (C) condition) differed in task difficulty level, we compared (a) whether or not 

participants were able to provide an answer to the arithmetic item within the given time frame (i.e. 2000 

ms), independent of the accuracy of that answer (i.e. a score of 0 was given if participants failed to 

answer within the time limit; a score of 1 when they were able to answer within the time frame) and (b) 

the number of correct arithmetic responses that were given within the time limit (i.e. a score of 0 when 

participants chose the incorrect solution to the arithmetic item; a score of 1 when they chose the correct 

solution). Importantly, trials in which participants did not respond, or responded too late due to the time 

limit, were excluded from the correct responses scores. No differences between the conditions were 

found on either of the arithmetic performance measures (independent sample t-test arithmetic response 

rate: MMC = 0.85 , SDMC = 0.10 ; MC = 0.83, SDC = 0.13; t(98) = 0.83, p = .41; independent sample t-

test correct arithmetic responses: MMC = 0.81 , SDMC = 0.09 ; MC = 0.83, SDC = 0.8; t(98) = -1, p = .32). 

Bayes factors for these analyses indicated evidence for the null hypothesis of no difference between the 

conditions (both BF10’s < 0.33). This equivalence indicates there was no difference in degree of cognitive 
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demand in the arithmetic task between the two conditions, and thus ensures that differences in brain 

activity between these conditions are not due to variation in arithmetic task performance. 

 

Table 6.1  

Arithmetic and metacognitive performance in the scanner 

 n M SD Range 
Theoretical 

maximum 

In-scanner arithmetic performance      

Arithmetic response rate a 50 0.84 0.11 [0.59-1.00] 1.00 

Arithmetic correct responses b, c 50 0.82 0.08 [0.62-1.00] 1.00 

      

In-scanner absolute metacognitive judgment      

Absolute accuracy judgment b, d 50 2.62 0.17 [2.08-2.94] 3.00 

      

In-scanner metacognitive monitoring ability       

Monitoring ability b, e 50 1.65 0.15 [1.26-1.95] 2.00 

Note. a A score of 0 was given if participants failed to answer the arithmetic item within the time limit of 2000 ms; 

a score of 1 when they were able to answer within the time frame. b Only items on which participants were able to 

provide an arithmetic answer within the time frame were included in this measure. c A score of 0 was obtained if 

the arithmetic answer given was incorrect, a score of 1 if the arithmetic answer was correct. d A score of 3 was 

given if children indicated they were certain their arithmetic answer was correct, a score of 2 if they indicated they 

were unsure about their arithmetic answer, a score of 1 if they thought their arithmetic answer was incorrect. e A 

score of 2 was obtained if their metacognitive judgment corresponded to their actual performance (i.e. 

metacognitively judged as Correct and indeed correct academic answer; metacognitively judged as Incorrect and 

indeed incorrect academic answer), a score of 0 if their metacognitive judgement did not correspond to their actual 

performance (i.e. metacognitively judged as Correct and in fact incorrect academic answer; metacognitively 

judged as Incorrect and in fact correct academic answer), and a score of 1 if children indicated they Did not know 

about their academic answer.  

 

2 Imaging results 

To isolate areas of functional significance during which participants metacognitively judged the 

accuracy of their arithmetic answer, we examined the difference in neural activation between the 

metacognitive condition and the control (i.e. colour) condition, i.e. the metacognition contrast. An 

overview of the clusters that were more active during the metacognition than during the colour condition 

can be found in Table 6.2. A visualisation of this contrast is displayed in Figure 6.4. These differences 

were FWE corrected at p < .05. Our findings revealed that engaging in a metacognitive task was 

associated with stronger activation in the left inferior frontal gyrus (IFG). There were no other clusters 

that showed increased activity during the metacognition as compared to the control condition. 
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Table 6.2  

Region, coordinates of the peak voxel, number of voxels (k) and t-value of the activation clusters elicited 

by the metacognitive contrast. Voxel coordinates are presented in MNI space. 

 Peak coordinates  
 

Cluster x y z k t 

Metacognition > Control condition      

Left inferior frontal gyrus -47 30 -5 75 7.04 

 -56 21 13 10 4.94 

 

 

 

Figure 6.4. Results from the whole brain analysis of the metacognitive contrast. The activation map was 

corrected for multiple comparisons through a family wise error (FWE) correction with a p < 0.05 

threshold. 

 

3 Brain-behaviour correlations 

The significant cluster found in the left IFG was used as ROI to further understand the results of the 

metacognitive contrast. From this ROI, the contrast estimates of the metacognitive contrast were 

extracted. These beta-values, which represent the activation difference between the metacognitive and 

the control condition, were correlated with metacognitive and arithmetic performance indices (see 

below). 

3.1 Absolute metacognitive judgement & metacognitive monitoring ability 

We explored whether the activation found for engaging in metacognitive thought (i.e. activation in 

the left IFG) was also significantly correlated with other metacognitive aspects (i.e. metacognitive 

judgment level and metacognitive monitoring ability; Figure 6.5). No significant correlations were found 
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between brain activation for engaging in a metacognitive monitoring task and metacognitive judgment 

level or metacognitive monitoring ability. Bayes factors pointed to evidence for the null hypotheses. 

3.2 Arithmetic 

The results of the TTA on three time points are displayed in Table 6.3. Significant age-related 

changes in TTA score were found, with performance in each time point significantly differing from the 

other time points (F(2, 147) = 29.80, p < .001; Post hoc tests using Bonferroni correction: all p’s < .02). 

The intercept and slope of that change over time were calculated, indicating that on average children 

started with a performance of around 60 arithmetic items solved in 5 minutes, and each year, they were 

able to solve on average 14 items more. 

 

Table 6.3  

Performance on the TTA on three time points and development operationalised as intercept and slope 

of the regression line between the three time points 

 n M SD Range 

TTA T1 (grade 2) 50 72.62 16.37 [41-108] 

TTA T2 (grade 3) 50 90.32 19.34 [52-127] 

TTA T3 (grade 4) 50 100.72 19.34 [65-142] 

     

Intercept 50 59.79 18.31 [21.33-105.33] 

Slope 50 14.05 5.83 [2.5-26.0] 

 

 

We further explored whether the activation found for engaging in metacognitive thought was 

associated with arithmetic development, as measured by intercept and slope of the regression line of 

TTA performance on three time points (Figure 6.5). A significant correlation was found between brain 

activation for engaging in a metacognitive monitoring task and the intercept of arithmetic development. 

There was no significant correlation with slope in arithmetic development and Bayes factors pointed to 

evidence for the null hypothesis. 
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Figure 6.5. Scatterplots with fit lines of the associations and Pearson correlation coefficients between 

the behavioural measures of metacognition and arithmetic and brain activation in the left IFG. 

 

Discussion 

The current study tackled an important gap in the existing literature on how the brain generates 

metacognitive awareness of task performance. While there is already some evidence on this ability in 

adults (Fleming and Dolan, 2012), there are no brain imaging data available on this issue in children. 

Moreover, research focused predominantly on lower level cognitive processing and has mostly 

neglected particular aspects of the neurobiological basis of metacognition, namely which brain regions 

are involved in engaging in a metacognitive monitoring task. 

Addressing these gaps in the literature, the current study was the first to explicitly investigate the 

brain activation underlying the engagement in metacognitive monitoring in children, and during 

metacognitive monitoring in an academic task. We observed increased activation in the left IFG relative 

to the control task. No other increases in brain activity during metacognitive monitoring were observed. 

Brain-behavior correlations indicated that brain activity related to engaging in metacognitive monitoring 

and behavioral arithmetic performance were associated. These data are in line with the suggestion that 

prefrontal activation in the arithmetic brain network may be, at least partially, related to metacognition. 
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A comparison of the existing literature, which is exclusively based on adults, and the current data in 

children, demonstrates both similarities and differences in the neurobiological basis of engaging in 

metacognitive monitoring. Our results are in line with Chua et al. (2009), who found greater activity in 

the left inferior frontal region (BA 47) in adults for retrospective metacognitive monitoring compared 

to a prospective feeling-of-knowing. Our data are also in accordance with the in adults consistently 

observed activation increases in prefrontal regions during metacognitive monitoring. However, the exact 

location where this increased activation in the prefrontal cortex is found, differs depending on the very 

diverse study characteristics in the existing literature. These include operationalisation of metacognitive 

monitoring and the metacognitive aspect under study (e.g. confidence versus metacognitive ability), 

used contrasts (e.g. monitoring versus fixation or task performance), and the domain in which 

metacognitive monitoring was studied (e.g. perceptual decision making versus memory domain). For 

example, using low versus high confidence as metacognitive measure compared to fixation Chua et al. 

(2006) found activation differences in the PFC including anterior, dorsolateral and posterior regions of 

the bilateral IFG. Yet, when comparing confidence rating and a recognition task instead of fixation, they 

found different activation patterns (e.g. right orbitofrontal regions). Yokoyama et al. (2010) found that, 

in adults who were good at predicting the correctness of their recognition memory performance (i.e. as 

measured by a significantly positive gamma), brain regions exhibiting higher activity during confidence 

rating compared to a perceptual task included bilateral superior frontal regions.  

Using a similar design as in the current study, a small number of studies in adults have examined the 

brain activity of engaging in metacognitive monitoring independent of participants actual behavioural 

task performance; i.e. the brain activity regardless of which metacognitive judgment (e.g. “I think I’m 

(in)correct”) is given and regardless of whether one’s metacognitive judgment is aligned with the actual 

task performance. Specifically, Fleming and colleagues (2012) found that, in adults, in a perceptual 

decision making task, the right rostrolateral PFC showed greater activity during self-report compared to 

a matched control condition.  

Because of this large variability in characteristics of the studies that investigated the neurobiological 

basis of metacognitive monitoring, it is desirable to follow a meta-analytic approach to obtain a reference 

to which the results of the current study can be compared. The activation likelihood estimation (ALE) 

composite meta-analysis of metacognition-related activity by Vaccaro and Fleming (2018) revealed a 

consistent involvement of a frontoparietal network, including a cluster in the left IFG (peak coordinate 

in MNI: -36 28 -6; volume in mm³ = 1432; maximum ALE value = 0.0318). The current results in 

children are in line with this observation. Our results also align with their meta-analysis investigating 

retrospective metacognitive judgments and revealing consistent activation in the left IFG (Vaccaro and 

Fleming, 2018). It is worth noting that both meta-analyses also revealed other significant clusters in 

metacognitive monitoring in adults (e.g. bilateral parahippocampal), which were not found in the current 

study in children. 
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To more quantitatively compare metacognitive monitoring related activation found in our study to 

those associated with monitoring in the broader, existing adult literature, we obtained the association 

test maps for the term ‘monitoring’ and the term ‘judgement’ from Neurosynth (www.neurosynth.org; 

(Yarkoni et al., 2011); accessed November 2019), a platform for automatically synthesizing the results 

of many different neuroimaging studies using text-mining and meta-analyses to generate mappings 

between neurobiological and cognitive states. Data on the term ‘metacognition’ were not available in 

Neurosynth. The meta-analytical map associated with the term ‘monitoring’ describes the likelihood 

that a region will be activated if the study contains the term ‘monitoring’ over and above other terms in 

the database including 1335 terms, 507 891 activations reported in 14 371 studies. The automated meta-

analysis of 465 studies containing ‘monitoring’ revealed a map that contained a cluster in the left IFG 

(false discovery rate criterion of .01), of which the peak value was -34 24 -4. This suggests some overlap 

between the current result (i.e. peak value -47 30 -5, k = 75, voxel size 2.2) and the Neurosynth data for 

‘monitoring’. The automated meta-analysis of 290 studies containing ‘judgement’ also revealed a map 

that contained a cluster in the left IFG, which included the peak value found in the current study. Taken 

together, the existing meta-analytic data are thus overlapping with our results on the neurobiological 

basis of metacognitive monitoring using retrospective metacognitive judgments. 

The current study adds to the existing literature, as we explicitly investigated the neurobiological 

basis of metacognitive monitoring in children of a narrow age range and in higher order cognitive 

processing. Research with such a specific focus is of utmost importance to functionally specify brain 

activation associated with metacognitive processes. This furthers our understanding of the underlying 

neurocognitive architecture supporting metacognitive abilities. Investigating the activation tracking the 

requirement for a metacognitive judgment in particular, is an essential area of research, as a detailed 

meta-analysis of research in this area (Vaccaro and Fleming, 2018) demonstrated a lack of studies 

investigating this, even in the adult population. The current study addressed that lacuna. 

Because we specifically isolated the brain regions involved in metacognitive monitoring in arithmetic 

in children, the current study yields a unique opportunity to explore the overlap between metacognitive 

monitoring processes and arithmetic in children. During arithmetic, children are known to activate 

various parietal and frontal areas (Peters & De Smedt, 2017), a network that also includes the left IFG. 

Kucian et al. (2008) and Kawashima et al. (2004) also found significant activation increases during exact 

calculation and multiplication, respectively, in the left IFG. The current results, identifying the left IFG 

as the neurobiological basis for engaging in metacognitive monitoring, are in line with the frequently 

suggested hypothesis (e.g. Ansari et al., 2005; Arsalidou et al., 2018; Houdé et al., 2010; Kaufmann et 

al., 2011, 2006; Kucian et al., 2008; Menon, 2015; Rivera et al., 2005), that part of this prefrontal 

activation that is consistently found during arithmetic in children points to metacognitive awareness. 

The exploratory brain-behaviour correlations further reveal an association between brain activity 

related to engaging in metacognitive monitoring and arithmetic performance: Higher activation in the 

http://www.neurosynth.org/
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left IFG while engaging in metacognitive monitoring on arithmetic performance, is associated with 

better arithmetic performance. This aligns with Peters et al. (2018), who found higher activation during 

arithmetic in the left IFG for children with better arithmetic performance. Importantly, our data are not 

reflective of individual differences in error making or post-error responses, as such an association would 

reveal a negative correlation between arithmetic performance and left IFG activation, instead of the 

currently found positive association. Moreover, there was no difference in arithmetic accuracy between 

the metacognitive and the control condition, making it unlikely that activation related to errors would 

be captured in the metacognitive contrast estimates. 

Future research should build on our results to deepen our understanding of how the brain generates 

metacognitive awareness of task performance. Such studies should examine age-related changes in the 

neurobiological basis of metacognition in higher order processes, via comparing different age groups or 

by using longitudinal data. This is particularly relevant as metacognitive monitoring gradually shifts 

from being a more domain-dependent ability to a more domain-general process (Geurten et al., 2018). 

As such, an interesting avenue for future research is to study whether the current results are specific for 

arithmetic or whether the left IFG is generally involved in metacognitive monitoring in other domains. 

Additional research is also needed to investigate whether brain activation differs between different 

metacognitive judgments (e.g. “I think I’m correct” vs. “I think I’m incorrect”) and between correct vs. 

incorrect arithmetic trials, a possibility that we could not examine given the design of the current study. 

By building on this first empirical study on the neurobiological basis of metacognitive monitoring in 

children in arithmetic, subsequent studies might further clarify the role of metacognitive monitoring in 

arithmetic that was found in earlier behavioural research, at the level of the brain.  

 

Conclusion 

To conclude, this study is the first to reveal the neurobiological basis of metacognitive monitoring in 

children during an educationally relevant higher order process in the left IFG. The current design yielded 

a unique opportunity to explore the overlap between the neurobiological basis of metacognitive 

monitoring and arithmetic performance in children, as it has been frequently suggested, but was never 

empirically tested, that prefrontal activation during arithmetic performance pointed to control 

mechanisms such as metacognition. Our results are in line with this suggestion. 
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Chapter 7 

General discussion & Perspectives 

 

The important thing is to never stop questioning.  

Curiosity has its own reason for existing. 

– A. Einstein 

 

What child’s play is for some, is a Sisyphean task for others. This certainly also applies to arithmetic, 

a domain in which large individual differences are present, already early in life (e.g. Berch et al., 2016; 

Dowker, 2005, 2019b). Through the different studies within this dissertation, I aimed to contribute to 

the knowledge on the cognitive, metacognitive and affective correlates of arithmetic performance and 

development, which may eventually help to develop effective instructional approaches and might 

contribute to designing scientifically validated remediation programs for children at risk for or with 

difficulties in arithmetic.  

The first two empirical studies in the current dissertation (Chapter 2 and Chapter 3) simultaneously 

investigated different cognitive and metacognitive processes and their associations with arithmetic. 

These chapters provided the groundwork for the current dissertation. Throughout these studies, 

metacognitive monitoring emerged as an important, unique process related to arithmetical performance 

and development. Because of this promising role of metacognitive monitoring in arithmetic, the 

subsequent chapters (Chapters 4 to 6) of this dissertation fleshed out the role of metacognitive 

monitoring in more detail. 

Although the current dissertation tackles important gaps in the existing body of research, the interest 

in metacognition is not new. In line with Descartes’ (1628) “Cogito ergo sum”, many scholars contend 

that the ability to reflect upon our thoughts and behaviour, upon our cognition in general, constitutes the 

core of what makes us human. Rightfully so, countless philosophers and scientists have been fascinated 

by this self-reflective nature of human thought. Furthermore, metacognition has everyday relevance, not 

only for patients with neurological or psychiatric disorders (e.g. David et al., 2012), or the healthy aged 

with deficits in metamemory (Souchay et al., 2007), but also for learners and for educators who want to 

promote learning, for researchers interested in how the mind works (Schneider & Artelt, 2010), and for 

people who swear they left their keys by the front door only to find them on the kitchen table. Learning 

is difficult in a world that changes ceaselessly (Meyniel & Dehaene, 2017), and good metacognitive 

knowledge and skills are an essential part of acquiring a new skill. For example, good metacognitive 

monitoring enables one to discriminate between (arithmetic) errors and correct responses, and as such 

may improve (arithmetic) accuracy by facilitating the implementation of control (Rinne & Mazzocco, 

2014). While people are capable of robust evaluation of their cognition (Yeung & Summerfield, 2012), 
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even at a young age (e.g. primary school, Lyons & Ghetti, 2010), one’s belief about one’s own 

knowledge and/or performance is rarely entirely valid, and even often spurious. Nevertheless, people 

frequently act upon such beliefs and they may redirect behaviour. Bad self-judgment and/or 

overconfidence in one’s own judgment may lead to the failure to take advantage of learning 

opportunities, due to, for example, not seeking more information when performance is suboptimal 

(Desender et al., 2018). Furthermore, bad self-judgment and/or overconfidence may have disastrous 

consequences in high-risk situations. Dramatic world events, such as high rates of entrepreneurial 

failure, global stock market crashes, the explosion of the Space Shuttle Challenger and the nuclear 

accident at Chernobyl have all been blamed on overconfidence (Molenberghs et al., 2016; Moore & 

Healy, 2008).  

An important part of the scientific literature on metacognition has evaluated the role of metacognition 

in learning, memory, thinking, problem solving, and decision making (e.g. Metcalfe & Shimamura, 

1994). Hence, an extensive body of research on the role of metacognition in different domains of 

performance is available that provides the indispensable foundation on which the research in this 

dissertation is built. The contribution of the current dissertation to this literature is the specific angle 

through which the role of metacognition was investigated. Firstly, I specifically focused on a subdomain 

of mathematics, namely arithmetic performance and development, to more carefully unravel the 

previously observed associations between metacognition and general mathematical performance and 

development. Secondly, I investigated the role of metacognition in addition to other cognitive and 

affective processes that are widely recognized as important for arithmetic. Thirdly, I further focused on 

one specific aspect of metacognition, that is the metacognitive monitoring of accuracy. To that end, I 

used a more experimental approach, asking children on a trial-by-trail basis to report their judgment on 

the accuracy of their arithmetic answer. 

To summarize, even though a vast body of literature exists on, on the one hand, children’s arithmetic 

skills and development, and on the other hand, metacognition in mathematics, the association between 

children’s arithmetic performance and development with their metacognitive abilities is not completely 

understood. The overall aim of this doctoral project was thus to broaden our knowledge on the correlates 

of arithmetic performance and development by focusing on the role of metacognition, thereby 

complementing detected gaps in the literature using different methodological frameworks and 

investigating different cognitive, metacognitive and affective processes. 

In the remainder of this general discussion, I will discuss the main findings of the current dissertation, 

followed by a methodological and theoretical discussion, standing still at the strengths and weaknesses 

of the current dissertation and providing some suggestions for future research. Next, I will further 

discuss some educational considerations related to the current research. This chapter ends with a general 

conclusion.  
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Integrative Summary 

1 The unique roles of numerical magnitude processing, executive functions and metacognition 

in arithmetic performance and development in primary school children 

 Chapter 2 in the present dissertation provided the groundwork for all subsequent studies. This 

empirical study focused on simultaneously investigating numerical magnitude processing, executive 

functions (inhibition, shifting and updating) and metacognition, to unravel their unique roles in 

arithmetic performance in young primary school children (i.e. second graders). Importantly, these 

second graders were in the middle of an important developmental period not only for arithmetic, but 

also for the other cognitive and metacognitive processes under investigation.  

The approach of investigating domain-specific and domain-general processes in concert is an 

important contribution to the existing literature on mathematics in general and arithmetic in specific, as 

within this body of research, domain-specific and domain-general processes have been frequently 

studied in isolation (e.g. Fias, 2016, for a critical discussion). A crucial and novel characteristic of the 

study reported in Chapter 2 is the inclusion of metacognition on top of the other cognitive processes. 

The consideration of metacognition is especially important, because of its close link to executive 

functions (see Roebers, 2017; Roebers & Feurer, 2016). 

The results indicated that symbolic numerical magnitude processing was uniquely associated with 

arithmetic performance, even when other important processes, namely executive functions and 

metacognition, were considered simultaneously. As such, it was demonstrated that this association does 

not merely arise as a result of a common reliance of numerical magnitude processing and arithmetic on 

these other, domain-general processes, which has been suggested in the existing literature. Moreover, 

Chapter 2 established that, when all three components of executive functions were considered together, 

there was only evidence for the unique role of updating in explaining individual differences in arithmetic 

performance. This emphasises the need to include all three components of executive functions when 

investigating their role in primary school children. Concerning metacognition, the results demonstrated 

that declarative, general metacognitive knowledge was a significant predictor of addition speed, on top 

of numerical magnitude processing and executive functions. Although this novel result needs to be 

replicated, this may suggest that good metacognitive knowledge is important for arithmetic when a child 

is already somewhat proficient in the area. A critical finding in Chapter 2 is that metacognitive 

monitoring was a strong, stable and unique predictor of concurrent arithmetic performance. This study 

was the first to demonstrate this importance of metacognitive monitoring in arithmetic, over and above 

the role of numerical magnitude processing and executive functions.  

In sum, the results of Chapter 2 showed that numerical magnitude processing, updating, and 

metacognition were all significantly and uniquely associated with aspects of arithmetic. Importantly, 
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this study emphasized the need to include metacognition in cognitive and developmental research on 

mathematical cognition. Indeed, this research field has not paid a lot of attention to the study of 

metacognition as is evidenced by the fact that this process has scarcely been mentioned in some of its 

major overview works (e.g. Campbell, 2005; Cohen Kadosh & Dowker, 2015; Dowker, 2019c; David 

C. Geary, 1994; Gilmore et al., 2018a; Henik & Fias, 2018). However, this is in sharp contrast with the 

educational research on mathematical learning, as metacognition has been studied quite extensively in 

the domain of mathematics education (e.g. Schneider & Artelt, 2010). 

Because Chapter 2 only reported on concurrent associations, we were not able to assess the stability 

of the found associations over development, to examine whether these processes explain individual 

differences in later arithmetic performance, and to investigate the predictive power of these processes 

for the development of arithmetic while accounting for prior arithmetic performance. Indeed, besides 

the need for the simultaneous investigation of numerical magnitude processing, executive functions and 

metacognition, an important gap in the current literature was the lack of longitudinal investigation on 

this topic. Such research is critical as it allows us to better understand the developmental dynamics 

between the investigated processes (i.e. predictors vs. consequences, the possibility of bi-directional 

associations and predictors of change). Therefore, in Chapter 3, I used a longitudinal panel design to 

thoroughly investigate the stability of the found associations, the longitudinal associations between the 

investigated processes (i.e. numerical magnitude processing, executive functions and metacognition) 

and arithmetic and the predictive power of these processes over and above prior arithmetic performance. 

Chapter 3 established the stability of the concurrent associations of symbolic numerical magnitude 

processing, general metacognitive knowledge and metacognitive monitoring with different aspects of 

arithmetic performance. Our findings confirm the unique role of each of these processes throughout 

arithmetic development in early to middle primary school. Unexpectedly, no strong evidence was found 

for the role of executive functioning in explaining individual differences in arithmetic performance in 

third grade. The lack of strong associations with measures of executive functioning might be explained 

by the fact that arithmetic becomes a more automatized, less effortful skill, in which controlled 

processing, as measured by the executive functioning tasks, might not be powerful predictor of 

individual differences anymore.  

Chapter 3 also investigated longitudinal associations to determine whether numerical magnitude 

processing, executive functions and metacognition each explain individual differences in later arithmetic 

performance. These longitudinal associations mirrored the concurrent associations found in third grade. 

We observed a unique association of symbolic numerical magnitude processing, general metacognitive 

knowledge and metacognitive monitoring in second grade, with arithmetic performance in third grade. 

No associations between executive functions in second grade and arithmetic in third grade were 

observed. 
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The most critical element in Chapter 3 was the inclusion of the autoregressive effect of arithmetic. 

After taking into account prior arithmetic performance, only moderate evidence for the predictive role 

of general metacognitive knowledge and anecdotal evidence for numerical magnitude processing was 

found. Although it needs to be acknowledged that the control for autoregressive effects is a very stringent 

one, no strong claims can be made about the predictive power of metacognitive monitoring for arithmetic 

development. Importantly, our results emphasize the crucial, robust predictive role of prior arithmetic 

performance for later performance and development. This emphasises a major issue in the existing 

mathematical cognition literature. Many longitudinal studies in the field of arithmetic have failed to 

include prior arithmetic performance as an important predictor of individual differences in mathematical 

performance in their models (e.g. Sasanguie et al., 2012; Vanbinst, Ghesquière, et al., 2015). Hence 

these studies do not investigate the importance of (meta)cognitive processes relative to prior arithmetic 

performance. Including prior arithmetic performance yields the possibility to examine the predictive 

power of the investigated (meta)cognitive processes for development in arithmetic, by ensuring that the 

concurrent correlations between these (meta)cognitive processes and arithmetic do not confound the 

investigated predictive association. Hence, the current results urge for the inclusion of prior performance 

in future longitudinal studies on mathematical cognition. 

Chapter 2 and Chapter 3 significantly added to our understanding of the developmental dynamics 

between several cognitive and metacognitive processes and arithmetic in a crucial developmental period 

in primary school (i.e. second to third grade). Building on our results, further research on these 

developmental dynamics earlier in development (e.g. first grade) is very promising. Such an 

investigation could provide us with a deeper understanding of these dynamics in children at the start of 

their arithmetic learning process. 

 

2 The interplay of metacognitive monitoring and mathematics anxiety in arithmetic in primary 

school children 

Learning arithmetic involves a complex interplay of diverse processes, including metacognitive and 

affective processes. When investigating the association between metacognitive monitoring and 

arithmetic, their interplay with mathematics anxiety is of particular interest. This is because, on the one 

hand, both metacognitive monitoring and mathematics anxiety have been shown to be associated with 

arithmetic performance and development. On the other hand, metacognitive monitoring as well as 

mathematics anxiety are processes that are linked to thinking about your performance. Chapter 4 

therefore focused on the interplay of metacognitive monitoring and mathematics anxiety in arithmetic.  

Specifically, I aimed to investigate whether metacognitive monitoring and mathematics anxiety were 

indeed associated in primary school children and whether their respective associations with arithmetic 

were influenced by this interrelation. I also investigated the role of arithmetic performance itself within 
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this interplay. To reach this goal, a longitudinal panel design was applied, using correlations and multiple 

regression analysis, as well as moderation and mediation models. Mediation analyses enabled us to 

investigate potential mechanisms by which certain effects operated, while moderation analyses enabled 

us to investigate when, i.e. at which level of another process, an effect occurred between two processes.  

The findings of our preregistered analyses confirmed the concurrent and longitudinal associations 

between, on the one hand, arithmetic and metacognitive monitoring, and, on the other hand, arithmetic 

and mathematics anxiety. It should be noted that our results mainly showed associations of arithmetic 

with mathematics anxiety in third grade, and much less with mathematics anxiety in second grade. The 

same pattern of results was observed for the association between metacognitive monitoring and 

mathematics anxiety: The findings revealed that metacognitive monitoring and mathematics anxiety 

were significantly correlated concurrently and that this association was more pronounced in third grade 

than in second grade. These results might suggest an increasing importance of mathematics anxiety in 

the development of primary school children at different levels of performance, i.e. academic as well as 

metacognitive. While this pattern of results needs to be further investigated in future research, these 

results urge to tackle (signs of) mathematics anxiety already early in primary school. 

The current longitudinal study provided further insights into the developmental dynamics of the 

association between metacognitive monitoring and mathematics anxiety: Earlier mathematics anxiety 

was associated with later metacognitive monitoring but not vice versa. This suggests that mathematics 

anxiety might hinder one’s ability to correctly monitor one’s performance, rather than that metacognitive 

awareness of performance leads to mathematics anxiety. However, no conclusive evidence was found 

for a predictive effect of mathematics anxiety for metacognitive monitoring once prior metacognitive 

monitoring was taken into account. The results further suggest that the predictive power of mathematics 

anxiety for metacognitive monitoring was mediated through arithmetic performance, which emphasises 

the pivotal role of arithmetic performance in the development of metacognitive monitoring and 

mathematics anxiety.  

This pivotal role of performance was also gleaned from the observation of a strong predictive role of 

arithmetic for both metacognitive monitoring and mathematics anxiety, on top of their respective 

autoregressors. Furthermore, mediation analyses demonstrated that this predictive role was a direct 

effect, without mediation or moderation by metacognitive monitoring or mathematics anxiety. These 

results are thus in line with the deficit model of mathematics anxiety (Carey et al., 2016), stating that 

poor arithmetic performance leads to higher mathematics anxiety in the future. 

When prior arithmetic performance was considered, neither metacognitive monitoring nor 

mathematics anxiety predicted later arithmetic performance. This might be explained by the extremely 

strong autoregressive effect of arithmetic, which makes explaining additional variance very difficult. 

Another explanation is that the effects of metacognitive monitoring and mathematics anxiety are 
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inherently intertwined with the measure of arithmetic, as both metacognitive monitoring and 

mathematics anxiety are processes that co-occur with performance. These two hypotheses are discussed 

in more detail section below (See Section 4 of the General Considerations). 

As was documented in the discussion to Chapter 3, controlling for the autoregressive effect of prior 

arithmetic performance was a very stringent control. Therefore, Chapter 4 additionally examined the 

longitudinal associations between metacognitive monitoring, mathematics anxiety and arithmetic 

without the inclusion of the autoregressor. On the one hand, the predictive power of metacognitive 

monitoring for later arithmetic performance was found to be a direct effect, without mediation or 

moderation by mathematics anxiety. On the other hand, the predictive power of mathematics anxiety for 

later arithmetic performance was an indirect effect, mediated – but not moderated – by metacognitive 

monitoring. This may suggest that mathematics anxiety is only predictive of later arithmetic 

performance through metacognitive awareness. Taken together, both of these findings emphasize the 

importance of metacognitive monitoring for later arithmetic. However, cautious interpretation of these 

findings is needed, because these results were only found when prior arithmetic performance was not 

considered. 

A further interesting investigation of the interrelations between metacognitive monitoring and 

mathematics anxiety could be to examine the association between different categories of metacognitive 

judgements and mathematics anxiety. In the current study, no distinction in the performance measure of 

metacognitive monitoring was made between a correct metacognitive judgment in the context of a 

correct arithmetic response (i.e. correct arithmetic answer was and child indicated “I think my answer 

was correct”) versus in the context of an arithmetic error (i.e. arithmetic answer was incorrect and child 

indicated “I think my answer was incorrect”). Both situations resulted in a high metacognitive 

monitoring score. A distinction between correct metacognitive judgments depending on the accuracy of 

the arithmetic answer may potentially unravel other interrelations between metacognitive monitoring 

and mathematics anxiety. It is plausible that children who are frequently correct and know they are 

correct are less math anxious than children who frequently make arithmetic errors and realize this. To 

thoroughly investigate this, a careful design is needed in which there is a substantial number of 

observations in each category (e.g. both correct and erroneous responses; different metacognitive 

judgments), which may be realized by adaptively adjusting difficulty level of the arithmetic items. 

In light of the overarching topic of the current dissertation, a crucial finding in Chapter 4 is that the 

association that was found between arithmetic and metacognitive monitoring is unique, and that it cannot 

be explained by mathematics anxiety. The results suggest that the longitudinal association between 

arithmetic and metacognitive monitoring is mostly driven by the influence of arithmetic on 

metacognitive monitoring rather than the other way around. This hypothesis should be addressed in 

further research that bypasses the abovementioned drawbacks of autoregressive effects, for example, by 

using training studies, as will be discussed below (Section 4 of the General Considerations). 
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3 Metacognitive monitoring across domains 

Chapter 5 specifically addressed the question on the domain-specificity versus domain-generality 

of metacognitive monitoring. Metacognitive monitoring has been investigated in and associated with a 

wide range of cognitive domains, but the extent to which metacognitive monitoring is domain-general, 

is debated (e.g. Schraw et al., 1995). In other words, it is unclear whether metacognitive monitoring in 

a certain domain is reliant on domain-specific components or whether it reflects a general performance 

monitoring process that is recruited to evaluate performance on a variety of tasks. 

In Chapter 5, two studies in primary school children were described to thoroughly investigate the 

domain-specificity versus domain-generality hypothesis. Two different age groups were selected 

because it has been suggested that in primary school there is a shift from domain-specificity to domain-

generality occurring between the age of 8 and 13 years (Geurten et al., 2018). One group was specifically 

chosen just under this age-range, i.e. a 7-8-year-old group, for which children’s metacognitive 

monitoring was expected to be domain-specific. The other age group, i.e. 8-9-year-olds, was exactly at 

the beginning of the age range for which domain-generality is assumed to start emerging. The fact that 

these two groups only differed in one grade is an important strength of the design. This allowed us to 

use the same arithmetic, spelling and metacognitive monitoring paradigm, to maximize comparability 

between age groups. On the other hand, the additional use of standardized academic performance tasks 

ensured that the results on domain-generality of metacognitive monitoring could not be merely 

explained by similarities in paradigms to measure academic performance. 

Another critical strength of the two studies in Chapter 5 is that these included different but highly 

related academic domains, i.e. arithmetic and spelling. A stringent test of the possibility of domain-

specificity requires the examination of metacognitive monitoring in related domains. Indeed, 

investigating this in distant domains (e.g. Vo et al., 2014) would, by design, increase the likelihood of 

revealing evidence for such domain-specificity. When investigating the question of domain-specificity 

in highly related domains, it is, however, of the utmost importance to remove variation attributable to 

performance scores, because associations between performance on the cognitive tasks can confound the 

results on the domain-specificity or domain-generality of metacognitive monitoring in those domains 

(Schraw et al., 1995). Therefore, another crucial strength of Chapter 5 is that performance on the 

cognitive tasks was controlled for in our models. 

Specifically, Chapter 5 investigated in two age groups whether metacognitive monitoring was 

associated with performance in both domains. Critically, it was examined whether metacognitive 

monitoring in one domain correlated with metacognitive monitoring in the other domain as well as 

whether monitoring in one domain was predictive of performance in the other domain, and vice versa. 

The findings indicate that within-domain metacognitive monitoring was indeed associated with 

arithmetic and spelling performance at both ages. Taking into account the stringent empirical test of 
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domain-specificity, the results showed domain-specificity of metacognitive monitoring in the youngest 

age group and aspects of domain-specificity in the oldest group. However, in the oldest group, the critical 

findings were that metacognitive monitoring measures in different domains were predictive of each 

other and monitoring in one domain predicated performance in the other and vice versa, even after taking 

into account performance. Taken together, these findings thus suggest the emergence of more domain-

general metacognitive monitoring processes between the ages of 7 and 9, in line with what has been 

proposed by Geurten et al. (2018). The findings of Chapter 5 significantly added to our understanding 

of the development of metacognitive monitoring in primary school, which can benefit the refinement of 

theoretical frameworks of the gradual shift from domain-specificity of metacognitive monitoring 

towards more domain-generality of metacognitive monitoring (see Section 1.4 of the general 

considerations). 

 

4 A developmental cognitive neuroscience perspective on metacognitive monitoring during 

arithmetic in children  

Chapter 6 in the present dissertation included behavioural as well as brain-imaging measures, i.e. 

using fMRI, to examine the role of metacognitive monitoring in arithmetic at the neurobiological level. 

Based on the existing brain imaging literature on both arithmetic (e.g. Peters & De Smedt, 2017) and 

metacognitive monitoring (e.g. Fleming & Dolan, 2014), investigating this was particularly interesting 

because of the overlap in brain networks that are associated with both processes. Research on the 

neurobiological basis of arithmetic has systematically observed increases in activity in prefrontal regions 

during arithmetic (e.g. Arsalidou et al., 2018; Peters & De Smedt, 2017). On the other hand, 

metacognition is considered a higher-order brain function that strongly depends on the prefrontal cortex 

(e.g., Shimamura, 2000). Research that examined the overlap in brain activity between arithmetic and 

metacognition in the prefrontal cortex was, however, lacking. Furthermore, no studies on the 

neurobiological basis of metacognitive monitoring were available in children. In view of the massive 

changes in brain structure and function throughout childhood, the mere generalization of adult findings 

to developmental populations could be problematic (e.g. De Smedt, 2018).  

The study presented in Chapter 6 tackled these issues by, firstly, examining the neurobiological basis 

of metacognitive monitoring during arithmetic in children. Secondly, the association between brain 

activation during metacognitive monitoring, as measured via fMRI, and arithmetic outside the scanner 

was investigated. It is important to note that, to enhance ecological validity, the paradigm that was 

administered in the MRI scanner explicitly addressed arithmetical skills that are formally taught in 

school. Because measures of performance in the scanner are obtained in a very strict and unnatural 

setting, I deliberately chose to correlate brain activity during metacognitive monitoring with an 

ecologically valid, widely used standardized measure of children’s arithmetic performance in the 

classroom (i.e. TTA; see De Smedt et al., 2010, for a discussion). We therefore specifically recruited 
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children who participated in the studies in Chapter 2 and Chapter 3. As a result, we were able to combine 

the longitudinal behavioural data on arithmetic performance and development over a three-year period 

with the brain imaging data in Chapter 5. Another way to enhance the ecological validity that we used 

in this neuro-imaging study was that, for the measurement of metacognitive monitoring, we used exactly 

the same method of assessment that was used throughout the behavioural studies presented in this 

doctoral dissertation. 

A critical challenge in fMRI studies is to develop an appropriate control condition to isolate the 

specific process under investigation. To do so for metacognitive monitoring, a stringent control 

condition, i.e. performing the same arithmetic task with a judgment on colour instead of a metacognitive 

judgment, was used. As a result, the only difference between the experimental and the control condition 

was in metacognitive monitoring. Our findings demonstrated that metacognitive monitoring in children 

is reflected in brain activity in the left inferior frontal gyrus (IFG). The observed region of activation is 

in line with the expectations for the neurobiological basis of metacognitive monitoring, based on the 

adult literature (Vaccaro & Fleming, 2018). Activity in the left IFG has also been consistently found 

during arithmetic (Peters & De Smedt, 2017). The results thus provided evidence in line with the 

hypothesis that part of the prefrontal activation during arithmetic in children might reflect metacognitive 

monitoring processes. Going one step further, correlations between our unique set of longitudinal 

behavioural data and brain imaging data further pointed toward an association between brain activity 

related to engaging in metacognitive monitoring and arithmetic performance. 

fMRI measurements require participants to lie very still in a noisy environment, which is quite 

different from what happens in the classroom. By combining these neuro-imaging data with the more 

ecologically valid longitudinal behavioural data, we furthered our understanding of the neurobiological 

processes that play a role when children learn school-relevant skills. Neuro-imaging data on 

metacognitive monitoring can add to our understanding of what happens when children engage in 

metacognitive monitoring processes. Especially in children, this way of measuring metacognition has 

been neglected. Yet, this is a promising avenue for further research as these neurobiological measures 

expand the methodological toolbox of behavioural researchers (e.g. de Smedt & Verschaffel, 2010, for 

a critical overview). Enhancing our understanding of how the brain works can further our understanding 

of arithmetic performance and development and the processes associated with individual differences 

herein. 
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General theoretical and methodological 

considerations 

When contemplating the current dissertation and its results, it is important to critically reflect upon 

its strengths and limitations, which are theoretical as well as methodological in nature. Within this 

doctoral dissertation, several cognitive, metacognitive and affective processes were examined in concert. 

Throughout these studies, metacognitive monitoring was found to be an important, unique process 

related to arithmetic, hence, its role was studied in more detail over several studies. As a result, the 

current dissertation provided further insight into the interplay of different correlates of arithmetic and 

presented novel findings on the role of metacognition in arithmetic in primary school children, 

investigated with both behavioural and neuro-imaging methods.  

Against this background, I will start with some critical considerations regarding the study of 

metacognition. Secondly, I will discuss the interrelations between metacognition and executive 

functions. Thirdly, I will elaborate on measurement challenges, such as the issue of task impurity, related 

to the study of the various cognitive, affective and metacognitive processes within this dissertation. 

Fourthly, I will review important considerations with regard to our correlational, individual differences 

approach, including the directionality of the investigated associations. Finally, I will discuss the 

complexity of the investigated processes themselves and the studied interrelations between cognitive, 

metacognitive and affective processes.  

 

1 A meta-perspective on metacognition 

Across the studies within this dissertation, the role of metacognition was investigated in concert with 

different cognitive and affective processes, at different ages, using both measures of declarative as well 

as procedural metacognition, and within both behavioural and neuro-imaging frameworks. In this 

section, I discuss several theoretical and methodological issues related to our measure of metacognition 

and to our results on the role of metacognition in arithmetic.  

 

1.1 Focused investigation of a broad construct 

Metacognition is a very broad concept, encompassing many different aspects that differ substantially 

(Flavell, 1979). There is a long tradition of research on metacognition in general and metacognition in 

mathematics (education) in particular, and, as a result, there exists an extensive body of research on this 

topic. The current dissertation contributes to this body of research by focusing on particular aspects of 

metacognition in a particular subdomain of mathematics.  
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Specifically, this doctoral dissertation included two aspects of metacognition, namely metacognitive 

monitoring of accuracy, and declarative metacognitive knowledge, both central aspects of 

metacognition. This focused investigation enabled us to functionally specify the association between 

mathematics and metacognition and as such build up a more profound understanding of critical 

components of metacognition for mathematics. One advantage of simultaneously investigating different 

aspects of metacognition is that it allows to examine their differential effects on, in this dissertation, 

arithmetic performance. On the one hand, metacognitive monitoring of accuracy was found to be a 

stable, unique concurrent correlate of arithmetic performance, and predictive of later performance, but 

not of development. On the other hand, declarative domain-general metacognitive knowledge was found 

to be a stronger longitudinal predictor of performance and development of specific aspects of arithmetic 

and not so much a concurrent correlate. It should also be noted that our measures of metacognitive 

monitoring and declarative metacognitive knowledge were not significantly correlated. This is in line 

with the abovementioned argument that different aspects of metacognition, while all related to ‘thinking 

about your thinking’, differ substantially.  

It is important to acknowledge that our specific operationalisation of metacognition is limited, as it 

does not capture the richness of the many aspects of metacognition. For example, one aspect of 

metacognition that I did not investigate are metacognitive control processes. These are defined as the 

individual's executive activities enabling the use and adaptation of different cognitive operations with 

the aim to increase learning behavior or test performance (Roebers et al., 2014) and include, for example, 

allocation of study time or correction of errors. Because of the intertwined nature of metacognitive 

monitoring and metacognitive control (Nelson & Narens, 1990), it would be interesting for future studies 

to also include measures of metacognitive control. Individual differences in metacognitive control could 

play an important role in arithmetic, and in the interrelation between arithmetic and metacognitive 

monitoring. As stated by (Begg et al., 1992), p. 195) “Knowing an item is inadequate is of little value in 

the absence of skills that will remediate the inadequacy.”, indicating that monitoring alone may not be 

sufficient for good performance. It may thus be especially conducive for arithmetic performance and 

development to not only have good metacognitive monitoring skills, as was investigated in the current 

dissertation, but to have a combination of good metacognitive monitoring skills and good metacognitive 

control skills, and as such having good metacognitive regulation. This metacognitive regulation may 

provide a solid basis for performance enhancement: “A system that monitors itself (even imperfectly) 

may use its own introspections as input to alter the system's behavior” (Nelson & Narens, 1990), p. 

128). Future research should investigate this hypothesis including both measures of metacognitive 

monitoring and metacognitive control. 
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1.2 How to measure metacognition? 

There is substantial heterogeneity in the approaches that studies use to measure metacognition, yet 

they all share the fact that they elicit subjective beliefs about cognition (Fleming & Dolan, 2012). Many 

methods for measuring metacognition have been used, such as questionnaires (e.g. Haberkorn et al., 

2014), thinking-aloud protocols (e.g. van der Stel & Veenman, 2010), observations (e.g. Veenman & 

Spaans, 2005) or on-task trial-by-trial metacognitive judgments (e.g. Rinne & Mazzocco, 2014). Within 

this dissertation, I used two different measures of metacognition: A validated questionnaire for 

children’s declarative metacognitive knowledge (Haberkorn et al., 2014) and a trial-by-trial 

metacognitive monitoring protocol (e.g. Rinne & Mazzocco, 2014). Because of its central role within 

this dissertation, I will first discuss this metacognitive monitoring paradigm in detail, commenting on 

both its strengths and weaknesses. 

The metacognitive monitoring paradigm used in this dissertation was embedded in a custom-made, 

computerized arithmetic task. Hence, it measured metacognitive monitoring applied to the arithmetic 

domain, which accentuates the importance of the specific items on which metacognitive monitoring is 

measured. Within the studies reported on in Chapter 2 to 5, this arithmetic task included single-digit 

addition and multiplication items. The same metacognitive paradigm was also used in our neuro-imaging 

study (Chapter 6), embedded in a multiplication task that included not only single-digit, but also multi-

digit items. As this study encompassed the last wave of our longitudinal follow up, children’s arithmetic 

skills had already substantially further developed. Therefore, this modification of the difficulty of the 

arithmetic task was introduced to ensure considerable inter- and intra-individual variability in arithmetic 

performance and metacognitive monitoring of accuracy. The research reported in Chapter 4 additionally 

used the same metacognitive monitoring paradigm embedded in a spelling task. In sum, all items used 

in the tasks in which our metacognitive monitoring paradigm was embedded, were age-appropriate and 

educationally relevant, as they were important topics of instruction at the age of our participants. This 

correspondence of the items on which metacognitive monitoring was measured with what is taught in 

school enhanced the practical and educational relevance of our findings and, as such, is an important 

strength of the current approach. 

A relevant distinction that is made in the existing literature on metacognitive monitoring is that of 

granularity of the judgment: Metacognitive judgements can occur both on a global (i.e. across multiple 

items of a task) or on a local (i.e. specific on one item) scale (e.g. Pieschl, 2009; Schraw, 1994). Our 

measure of metacognitive monitoring measure consisted of trial-by-trial reports of children’s judgement 

of the accuracy of their arithmetic answer. These trial-by-trial measures thus provided us with a precise, 

local measure of children’s metacognitive monitoring. As a result, it was possible to verify at the item 

level whether or not children were aware of when they were correct and when they made an arithmetic 

error. Additionally, in contrast to most global measures of metacognitive monitoring, our measure of 
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monitoring consisted of metacognitive judgments on a multitude of items. This provided a more nuanced 

measure of monitoring compared to one global metacognitive judgment.  

Based on these trial-by-trial reports, the performance measure of metacognitive monitoring was the 

alignment between the child’s metacognitive judgement of accuracy and the actual accuracy of the 

arithmetic answer. Investigating trial-by-trial correspondence between accuracy and metacognitive 

judgment on accuracy is a widely used measure of metacognitive monitoring (e.g. Fleming & Lau, 

2014), yet the way in which this correspondence is operationalised, differs substantially between studies. 

In all studies within the current dissertation, it was operationalised as follows: Correct academic answers 

yielded the highest metacognitive score if children said they were correct, and the lowest metacognitive 

score if they said they were incorrect. This scale was reversed when the academic answer was incorrect. 

As such our operationalisation focused on children’s metacognitive accuracy regardless of the accuracy 

of their academic answer itself. It is important to note that this measure is not the same as a measure of 

confidence. Naturally, metacognitive monitoring and confidence are closely linked, because confidence 

is involved when children make metacognitive judgments. For example, when children have low 

confidence in their arithmetic performance, they will likely indicate that they think their arithmetic 

answer is wrong. However, what is measured by the concepts of metacognitive accuracy and of 

confidences critically differs. Our measure of metacognitive monitoring, which is a measure of 

metacognitive accuracy, encompassed two aspects. On the one hand, actual performance on an academic 

item and, on the other hand, the child’s judgment of the accuracy of that performance. The 

correspondence between these two defined the metacognitive monitoring score that was consistently 

used in this doctoral dissertation. Hence, the way in which I operationalised metacognitive monitoring 

critically differs from plain measures of confidence, in which no correspondence with actual 

performance is made.  

It needs to be emphasized that other operationalisations of the correspondence between one’s 

metacognitive judgment and one’s accuracy on a task have been reported in the existing literature. These 

include the statistical correlation between accuracy and confidence over trials (e.g. Pearson’s r) or 

measures based on signal detection theory (e.g. type 2 d’) and receiver operating characteristics (ROC) 

analysis (see Fleming & Lau, 2014, for a critical overview). All these measures differ in how accurately 

they reflect a person’s metacognitive monitoring skills. A distinction that is often made in this context 

is the difference between ‘metacognitive bias’ and ‘metacognitive sensitivity’ (e.g. Fleming & Lau, 

2014). Metacognitive bias is the overall level of confidence expressed, independent of whether the 

answer is correct or incorrect, or in other words, the difference in subjective confidence despite constant 

task performance. Metacognitive sensitivity or metacognitive accuracy is the extent to which a 

metacognitive judgment discriminates between correctly and incorrectly solved trials. In this 

dissertation, I have focused on metacognitive sensitivity as our measure of metacognitive monitoring.  
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It is important to note that metacognitive sensitivity is often affected by task performance itself. One 

will have higher metacognitive accuracy in an easy task compared to a hard task (Fleming & Lau, 2014). 

On the other hand, most measures of metacognitive sensitivity may be subject to metacognitive bias. 

For example, it is known that children have the tendency to indicate high confidence in their 

performance, and as such tend to be overconfident (Destan & Roebers, 2015). Yet, theoretically, these 

aspects of metacognitive monitoring are independent: A child with high overall confidence (i.e. 

metacognitive bias), may still be sensitive to trial-by-trial variation in performance (i.e. high 

metacognitive accuracy). It is important to consider the effects of task performance and metacognitive 

bias in light of our results on metacognitive accuracy. For example, although age-appropriate items were 

used and substantial inter-individual variability in arithmetic and metacognitive monitoring performance 

was found, the average academic performance in our studies was fairly high in the tasks in which 

metacognitive monitoring was measured (i.e. range of average academic performance = [0.70-0.97]). 

As children tend to be overconfident (Destan & Roebers, 2015), combined with high accuracy rate, this 

may result in an overestimation of children’s metacognitive monitoring skills. Yet, several results in the 

current studies demonstrate that high task performance or metacognitive bias did not drive our results 

on the association between arithmetic and metacognitive monitoring. Firstly, when the metacognitive 

monitoring data were analysed based on the items with incorrect arithmetic answers only, the 

interpretation of the results did not change (e.g. Supplementary materials Chapter 2). Secondly, the 

interpretation of our results did not change when performance measures of metacognitive monitoring 

were based on a subset of items for which academic task performance was lower (e.g. general discussion 

section Chapter 5). Thirdly, when task difficulty was increased, for example by including double-digit 

arithmetic items in Chapter 6, our results on the association between metacognitive monitoring and 

arithmetic remained consistent. 

The second measure of metacognition that was used within this dissertation, albeit less prominently, 

was the general metacognitive knowledge questionnaire. I deliberately chose a validated questionnaire 

for primary school children that did not include questions on mathematics or arithmetic. Firstly, this 

allowed to preliminarily explore the domain-specificity hypothesis of metacognition by comparing a 

metacognitive measure within the arithmetic task versus a metacognitive measure without mathematical 

content (see below for a critical discussion). Because this measure did not tap into domain-specific 

mathematical knowledge, it allows to investigate the role of declarative metacognitive knowledge 

without mathematical confounds. While such independent investigation is certainly important, it is 

critical to note that such an approach does not allow one to examine the plausibly important role of 

declarative metacognitive knowledge related to the mathematical domain. Secondly, it is important to 

acknowledge that the declarative metacognitive knowledge questionnaire that was used, predominantly 

focused on the strategy component of declarative metacognitive knowledge, with less focus on the 

person and task categories of metacognitive knowledge (Flavell, 1979). Although a focus on 
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metacognition on strategy is in line with the emphasize on strategy knowledge in the existing literature 

(e.g. Carr et al., 1994), it is important to keep this in mind when interpreting the results on declarative 

metacognitive knowledge. 

 

1.3 The complex association between metacognition and cognition 

Many researchers claimed that metacognition enhances learning (e.g. Dehaene, 2020; Flavell, 1979; 

Rinne & Mazzocco, 2014; Schoenfeld, 1992; Veenman et al., 2006; Wang et al., 1990). In line with this 

idea, Kuhn (2000) and Lyons and Ghetti (2010) contended that metacognition, as a higher-order process, 

regulates and drives development in cognitive domains. On the other hand, Begg (1992), concluded 

based on two experiments in university students, that metacognitive monitoring had no value for later 

performance, thus suggesting it was epiphenomenal. Already in 1978, Ann Brown questioned whether 

metacognition was just an epiphenomenon (Brown, 1978), having no causal influence on cognition. This 

debate illustrates the complex relation between metacognition and cognition. Metacognition draws on 

cognition and as such it is very hard to have adequate metacognitive knowledge of and skills in a domain 

without substantial domain-specific knowledge (Veenman et al., 2006). The question one can ask is 

then: Is good metacognitive monitoring just merely a reflection of arithmetic accuracy or, else, does 

good metacognitive monitoring in fact contribute to arithmetic accuracy? (Rinne & Mazzocco, 2014). 

Although Brown put forward the question whether metacognition is epiphenomenal, she was 

convinced otherwise and stated that metacognition is not just cognition itself, but that the concept 

reflects a real change of emphasis towards cognition about one’s own cognitions, which has value in 

itself. In line with Brown’s idea, Kuhn (2000) argued that metacognition does not appear abruptly as an 

epiphenomenon in relation to first-order cognition, but emerges early in life, and follows an extended 

developmental course during which it becomes more explicit and effective. In the existing literature, it 

has been amply indicated that metacognition is not just epiphenomenal. Examples of this include that 

metacognitive monitoring is critical for providing input to metacognitive control processes (e.g. 

allocation of study time; Nelson & Narens, 1990), metacognitive monitoring prepares individuals to 

make effective use of feedback (e.g. Butler et al., 2008) and metacognitive knowledge provides learners 

with adequate learning strategies, such as rehearsal of newly learned materials (Flavell, 1979). In line 

with the idea that metacognition is not purely epiphenomenal, several findings in the current dissertation 

pointed to the importance of metacognition for arithmetic. A robust, uniquely predictive power of both 

declarative metacognitive knowledge and metacognitive monitoring for arithmetic performance was 

found on top of other important processes for arithmetic, such as numerical magnitude processing, 

mathematics anxiety and intellectual ability. Furthermore, declarative metacognitive knowledge 

uniquely predicted development in arithmetic performance.  
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The complex relation between metacognition and cognition is not only illustrated in the debate on 

whether or not metacognition is an epiphenomenon, but also in the question how people know what they 

know. Numerous scholars have theorized on and empirically investigated this topic (e.g. Koriat, 2007, 

and Kuhn, 2001, for critical overviews), thereby discussing the intertwined nature of cognition and 

metacognition. 

One important facet of this debate is the question of whether metacognition and cognitive 

performance draw upon the same information. Examples of two different accounts regarding this 

question are the direct-access view and the cue-utilization approach (e.g. Busey et al., 2000; Fleming & 

Dolan, 2012; Koriat, 2007; Koriat & Levy-sadot, 1999). In the direct access view, metacognitive 

judgments are based upon a direct survey of, for example, memory contents, whereas in the cue-

utilization approach various mnemonic cues, such as retrieval fluency, are used (e.g. Fleming & Dolan, 

2012; Koriat, 1997). In the current body of literature, most empirical evidence is found for the cue-

utilization approach (see Koriat, 2007, for an overview), indicating that metacognitive judgments are 

not solely based on the same information as first-level task performance.  

What then underlies metacognitive judgments, making them separable from cognitive judgments? 

Busey et al. (2000) stated that, for example, retrospective metacognitive judgements, are not only based 

on the information that determines accuracy, i.e. on the basis of a direct access to information in memory, 

but that they are also formed through the analytic consideration of aspects of the study and test 

conditions. This is in line with the cue-utilization view, which argues that metacognitive judgments are 

inferential in origin. They are based on a variety of cues and heuristics (Benjamin & Bjork, 1996). 

Hence, the accuracy of metacognitive judgments depends on the validity of these cues. A common 

distinction that is made in the cue-utilization view is the distinction between experience-based and 

information-based (or theory-based) judgements (e.g. Koriat, 2007; Schneider, 2015a). Experience-

based judgements are based on fast and automatic inferences made from a variety of cues that reside 

from immediate feedback from the task, such as familiarity of the task and the ease of processing. On 

the other hand, information-based metacognitive judgments are based on conscious and deliberate 

inferences. In information-based judgements, various pieces of information retrieved from memory are 

consulted and weighted in order to reach an advised judgment. These may include perceived difficulty 

of the task, the conditions of learning of the information in the task and perceived self-efficacy in the 

domain of the task. In sum, metacognitive judgments are thus affected conjointly by the content of 

declarative information retrieved from long-term memory and by, for example, the ease with which an 

answer is produced.  

In light of the results of the current dissertation, this cue-utilization approach may provide insight 

into the improvements of metacognition over development and the developmental shift from domain-

specificity of metacognition towards more domain-generality. This development may be related to 

improvements of metacognitive abilities that enable a shift from preferential reliance on automatic 
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inferences to a more frequent reliance on conscious and deliberate information-based processes. It may 

thus be interesting to train children to rely more on effective information-based judgments to enhance 

their metacognitive monitoring (see Koriat & Bjork, 2006, for a similar idea in the context of judgments 

of learning). 

Although metacognitive accuracy and accuracy in a cognitive task may be based on partially 

overlapping information (see Busey et al., 2000, for a review), and are often positively correlated (e.g. 

Rinne & Mazzocco, 2014), dissociations between, for example, judgments on cognitive performance 

and cognitive performance itself, have been consistently found in the existing literature. For instance, 

people often report high confidence in incorrectly solved items or in memories that never happened (e.g. 

Roediger & McDermott, 1995), indicating metacognition and cognition are dissociable constructs, that 

do not necessarily rely on the same information.  

In the discussion on the separability of cognition and metacognition, brain imaging research proved 

to be an important source of evidence, as it can compare neurobiological substrates of both processes. 

Such studies indeed indicated that performance on a cognitive task can be distinguished from 

metacognitive monitoring in that task (e.g. Chua et al., 2004; Fleming & Dolan, 2014). This was 

specifically found for retrospective confidence judgements (e.g. Chua et al., 2006; Fleming & Dolan, 

2014), which is how metacognitive monitoring was operationalised in the current dissertation. For 

example, fMRI studies comparing brain activity during task performance versus retrospective 

metacognitive judgements found important brain activation differences between task performance and 

metacognitive monitoring (e.g. Chua, Schacter, Rand-Giovannetti, & Sperling, 2006; Chua, Schacter, 

& Sperling, 2009). Lesion studies have also confirmed the separability between task performance and 

metacognitive performance by showing, for example, that patients with parietal lesions may have 

impairments in retrospective metacognitive performance despite little or no impairment in accompanied 

task performance (e.g. Berryhill, 2012; Davidson et al., 2008; Simons, Peers, Mazuz, Berryhill, & Olson, 

2010).  

 

1.4 Metacognition: Domain-specificity in domain-generality? 

Metacognition has commonly been regarded as a domain-general process that is associated to 

cognitive performance and learning in various domains (e.g. Efklides & Misailidi, 2010). However, 

especially in young children, domain-specificity of metacognition has been emphasized (e.g. Kelemen 

et al., 2000; Vo et al., 2014). Several studies within this dissertation dealt in more or less concrete ways 

with the question of the domain-specificity versus domain-generality of metacognition. 

Firstly, the studies reported in Chapter 2 and 3 provided some first evidence for domain-specificity. 

These findings demonstrated that within-domain metacognitive monitoring was a consistent, unique 

correlate of concurrent arithmetic performance, while domain-general declarative metacognition was 



G e n e r a l  d i s c u s s i o n  | 203 

 

 

 

7 

not. Strong claims on domain-specificity, however, cannot be made based on these results. That is 

because these measures of metacognition did not only differ on their domain-specificity, but also on the 

metacognitive aspect they measured (i.e. metacognitive knowledge versus procedural metacognition), 

and there were large operationalisation differences between the tasks (e.g. within task measurement 

versus task-independent questionnaire). Secondly, in contrast to the more incidental role of domain-

general declarative metacognition in concurrent arithmetic, a more prominent role of this declarative 

metacognition was found in arithmetic development. This may have reflected a gradual shift towards 

domain-generality of metacognition over development (e.g. Geurten et al., 2018). 

While providing some indications on the domain-specificity versus domain-generality of 

metacognition, the design of the studies in Chapters 2 and 3 was not suitable to thoroughly investigate 

this issue. Therefore, Chapter 5 deliberately investigated this question of domain-specificity by 

contrasting metacognitive monitoring in two different academic domains. Using this more careful 

design, evidence was found for the emergence of more domain-generality of metacognitive monitoring 

between second and third grade, although evidence was also found for the continuing importance of 

domain-specific components. It needs to be acknowledged that this study only focused on the 

metacognitive monitoring aspect of metacognition and not on declarative metacognitive knowledge. 

One possibility to further our knowledge on the domain-specificity versus domain-generality of 

metacognition would be to investigate this question by focusing on declarative metacognition. By 

comparing domain-specific declarative metacognition measures, e.g. declarative metacognition 

questionnaires on mathematics versus on spelling, one could unravel whether the gradual transition from 

domain-specificity towards more domain-generality in declarative metacognitive knowledge can also 

be found. 

Brain imaging studies might further add to our answer to the question of domain-specificity vs. 

domain-generality with a useful additional analytical toolbox. More specifically, it remains unclear 

whether a shift from domain-specificity to domain-generality of metacognitive monitoring in different 

domains relies on shift from distinct neural recourses to a shared resource, e.g. the prefrontal cortex, that 

supports metacognitive monitoring across domains. One way to investigate this question, building on 

the findings of Chapter 6, is to examine whether the left IFG is specific for metacognitive monitoring in 

arithmetic or also supports metacognitive monitoring in other domains, such as spelling. An even more 

advanced way to investigate this could be through multivariate pattern analyses (MVPA) in which the 

similarity or dissimilarity of neural activation patterns elicited by monitoring in arithmetic versus 

monitoring in spelling can be inspected (e.g. Martens et al., 2018, for an example in the domain of 

perception). This can be done by training a model to distinguish between the brain activity patterns of 

tasks (monitoring in arithmetic vs. monitoring in spelling) based on a subgroup of the participants and 

subsequently test if the model then can accurately distinguish between the brain activity patterns in the 

two tasks of the remaining participants. These analyses allow one to examine whether the brain 
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activation patterns elicited in different tasks are distinct or rather similar. This question could then be 

investigated at different ages, in view of the evidence for a developmental shift that was found in Chapter 

5. As such, neuro-imaging research can provide a complementary perspective to the behavioural data 

on this topic, by uncovering whether neurobiological signatures of metacognitive monitoring across 

tasks are common or distinct. 

 

2 Metacognition and executive functions: The same, only different? 

This dissertation included both metacognition and executive functions as processes of investigation. 

This is in line with the recently increasing interest to connect both processes theoretically and 

empirically (see Roebers, 2017, for an extensive review). It is important to note that the aim of our 

simultaneous investigating was not to make strong claims on the interrelation of both concepts in itself, 

but to investigate their unique role in arithmetic performance and development in addition to each other. 

This is particularly interesting because of the large similarities between these two processes, as both 

metacognition and executive functions are higher-order, control processes related to the regulation of 

behaviour. In the existing literature, the definitions of these processes also overlap substantially. For 

example, executive functions have been described as “Skills required to monitor and control thought 

and action” (Cragg & Gilmore, 2014, p. 63). Lee et al. (2013, p. 1933) describe executive functions as 

“Executive functioning encompasses a large range of top-down control and monitoring processes”. 

Very similar definitions are used for procedural metacognition, as is shown in the following two 

examples: “Metacognition research is focused on […] how people monitor and control their cognition 

on-task” (Bryce et al., 2015, p. 182); “Metacognition […] includes executive skills related to monitoring 

and self-regulation of one’s own cognitive activities” (Schneider & Lockl, 2008, p. 391). Besides 

overlapping definitions that can be found in the literature, metacognition and executive functions also 

follow a similar developmental trajectory and are associated with activation in anatomically similar 

brain regions, such as the dorsal-lateral prefrontal cortex (e.g. Roebers, 2017; Roebers & Feurer, 2016). 

Based on the overlap between both concepts, empirical studies including both concepts and 

investigating their interplay are especially interesting. The interrelation between metacognition and 

executive functions might be rooted in various mechanisms. On the one hand, metacognition can play a 

critical role in executive functioning processes because it allows for top-down control of behaviour and 

an accurate determination of when which type of control is needed. For example, when through 

metacognitive monitoring of performance, one is uncertain about his/her performance level, executive 

functions could be triggered for adaptation by switching between strategies to perform a task or by 

inhibiting interfering information to better focus on the task at hand. On the other hand, executive 

functions might be necessary to make metacognitive processes possible, as, for example, metacognitive 

monitoring may rely on working memory skills. Studies investigating both functions simultaneously 
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indicate that executive functions and metacognition, while being dissociable, are related (see Roebers 

& Feurer, 2016, for a short overview). This was also observed in this dissertation (Chapter 2 and 3), 

although we only observed an association with updating and not with other executive functions. When 

considered in concert to predict educational achievement, there is evidence that metacognitive skills are 

more important than executive functions (Bryce et al., 2015), as was also observed in the current 

dissertation (Chapter 2 and 3).  

It is, however, important to note that both executive functions and metacognition are broad concepts 

and that specific conceptualisations and operationalisations between studies can thus differ substantially. 

These differences in operationalisation also affect the amount of overlap between the concepts and the 

results of investigations on their interrelation. Within the current dissertation, both metacognition and 

executive functions were operationalised via tasks that have been widely used in other studies. 

Importantly, for metacognition, I specifically focused on declarative metacognitive knowledge and 

procedural metacognitive monitoring, but not on metacognitive control. This might explain why no 

strong associations were found between our measures of metacognition and executive function, as the 

strongest associations between metacognition and executive function have been observed at the level of 

metacognitive control (see Roebers & Feurer, 2016, for a short overview). 

 

3 General measurement challenges 

Several measurement challenges related to the current dissertation have already been discussed both 

within the different chapters of this dissertation and throughout this general discussion. In the following 

section, I further elaborate on three measurement challenges in more detail, which emerged over the 

different studies. These relate to the use of performance measures, task impurity and self-ratings. 

Within the current dissertation, several processes were investigated in which both accuracy and speed 

are important indicators of performance. For example, in arithmetic, people may strive for arithmetic 

fluency, that is, being both fast and accurate. Hence, in the different tasks used to measure different 

processes in the current dissertation (e.g. arithmetic, numerical magnitude processing), participants were 

asked to perform both accurately and fast. Accuracy of performance and speed of performance are thus 

inherently intertwined and investigating them separately might not always be ideal. On the one hand, 

the separate investigation of accuracy versus speed may be of interest to examine specific associations 

of either accuracy of performance or speed of performance with other processes. For example, in Chapter 

2, we found that accuracy, but not speed of addition performance was associated with metacognitive 

knowledge, which may indicate that general metacognitive knowledge on the effectiveness of strategies 

is especially important to accurately solve an arithmetic problem and perhaps less important to quickly 

solve the problem. On the other hand, the use of a performance measure that includes both accuracy and 

response time simultaneously is theoretically appealing. There is much debate, however, on how to 
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combine measures of speed and accuracy (e.g. Bruyer & Brysbaert, 2011; Liesefeld & Janczyk, 2019). 

One example is using inverse efficiency scores, i.e. dividing the average response time of correct 

answers by the overall accuracy, which we have used as performance measures for our inhibition tasks 

in Chapter 2 and 3. However, such scores are very sensitive to speed-accuracy trade-offs, which need to 

be evaluated before a combined performance measure is considered. Within this dissertation, 

exploratory analyses indicated that using separate or combined measures of accuracy and speed did not 

change the interpretation of our results on arithmetic, numerical magnitude processing, executive 

functioning and metacognition. This was also illustrated by the fact that, for example, an association 

between arithmetic and metacognitive monitoring was found independent of whether separate measures 

of accuracy and speed for arithmetic were used (e.g. Chapter 2) or whether a combined measure was 

used (e.g. TTA in Chapter 5). 

A pivotal point in the measurement of cognitive, metacognitive and affective processes is the issue 

of task impurity. This measurement problem has received most attention in the context of executive 

functions (e.g. Bull & Lee, 2014; Miyake et al., 2000), but the same rationale holds for the measurement 

of metacognitive processes. Task impurity concerns the problem that a single task assesses different 

components (e.g. both executive and non-executive function processes), making a pure interpretation of 

what the task measures troublesome. In research on executive functions, this is particularly problematic, 

because executive functions are higher-order processes that manifest themselves only in operating on 

other processes. By nature, tasks measuring executive functions insurmountably also tap into other 

(cognitive) processes that are not necessarily relevant to the targeted executive functions, but, for 

example related to the domain they are measured in. For example, when executive functions are 

measured with tasks that use numerical stimuli, as is the case in the often-used digit span backward task 

or in a numerical Stroop task, it can be problematic to interpret whether performance is related to the 

executive functioning skills, to processing of numerical stimuli, or to both. To overcome this problem, 

I deliberately decided to not include numerical stimuli in the executive functioning tasks. 

In the existing literature, task impurity is often addressed by using multiple tasks to measure each 

executive functioning component to obtain a measure of the latent ability level (e.g. Miyake et al., 2000). 

While I administered widely used executive functioning tasks, an important limitation of the current 

dissertation is that I did not include multiple measures for each executive functioning component. 

Consequently, I was not able to adopt such a latent variable approach. This limitation should be 

considered in light of the already large battery of tasks that I administered in primary school children 

within a school setting to measure cognitive, metacognitive and affective processes. 

Related to the issue of task-impurity, the use of self-rating scales to measure mathematics anxiety, 

although the most commonly used method (Dowker et al., 2016), is not without limitations. Self-rating 

scales require self-awareness and functioning self-inspection: One needs to adopt a meta-perspective on 

his/her own cognition, behaviour and/or affect. As a result, self-rating scales of mathematics anxiety 
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also include a metacognitive component and this may be troublesome when investigating the 

interrelations between mathematics anxiety and metacognition, as was the case in Chapter 5. However, 

it is critical to note that, in Chapter 5, I specifically focused on the metacognitive monitoring component 

of metacognition, using a measurement on a local scale (i.e. at the item level; Pieschl, 2009) with trial-

by-trial metacognitive judgments on accuracy. The metacognitive ability that is needed to fill in self-

rating scales may be much more related to global aspects of metacognition that reflect on general 

performance (e.g. on a whole task). It has been shown that local and global measures of metacognition 

represent distinct abilities that are not necessarily correlated (Pieschl, 2009). Future research could 

bypass this limitation of self-rating scales to measure mathematics anxiety by using physiological 

measures (e.g. heart rate or cortisol level), which do not include a self-reflective component (e.g. 

Avancini & Szűcs, 2019). 

 

4 Correlational, individual differences approach 

All studies presented within this dissertation were correlational in nature, using both cross-sectional 

and longitudinal designs. In the next section, I will elaborate on strengths and weaknesses of this 

approach, focussing on the use of a longitudinal design, the directionality of the investigated associations 

and the importance of the autoregressive effects, and on the critical difference between individual 

differences and prerequisites for performance when investigating the importance of other processes for 

arithmetic performance. 

The longitudinal nature of the investigation of the cognitive, metacognitive and affective processes 

in arithmetic in the current dissertation is an important strength. Longitudinal studies provide a unique 

insight into the development of different processes and thus are especially valuable when processes are 

examined in the midst of development, as were the studied processes in the current dissertation. By 

investigating the interrelations during this crucial developmental time, I was able to unravel 

developmental dynamics of the interplay between these processes in the context of arithmetic. By using 

a longitudinal panel design, the current dissertation was able, firstly, to unravel the stability over time 

of the associations found in early primary school; secondly, to uncover the longitudinal associations 

between several cognitive, metacognitive and affective processes and arithmetic; and critically, to 

investigate these predictive associations while taking prior performance (e.g. prior arithmetic 

performance) into account. 

Longitudinal studies are indeed important to investigate predictive associations between performance 

at earlier time points and later outcome. The dominant approach to study arithmetic performance and 

development within the existing literature, is investigating how other processes, such as executive 

functions, predict later arithmetic. Within this dissertation, I also predominantly set up our studies from 

this perspective. This approach is certainly worthwhile, because arithmetic is crucial in children’s 
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educational development and, more generally, in many aspects of modern life. It is thus essential to 

investigate what is associated with or predictive of arithmetic performance and development. However, 

to thoroughly study arithmetic performance and development, considering bi-directionality of the 

associations between arithmetic and its correlates is also important (e.g. Peng & Kievit, 2020, for a more 

general discussion of the issue of bidirectionality in predicting academic performance). The longitudinal 

study reported on in Chapter 4 also illustrates this. In this study, I not only investigated whether 

metacognitive monitoring and mathematics anxiety predicted later arithmetic performance, I also 

investigated whether arithmetic performance predicted later metacognitive monitoring and mathematics 

anxiety. The results indeed demonstrated the predictive power of arithmetic performance for these 

processes later in development, which was also confirmed in Chapter 5. Only by considering the bi-

directionality of the associations, I was able to establish this pivotal role of academic performance in 

processes that are generally considered to be ‘support processes’. On the other hand, academic 

performance can also play an important role in the interrelation between different processes, as was 

shown by the mediation by arithmetic performance of the association between early mathematics anxiety 

and later metacognitive monitoring reported in Chapter 4. 

While longitudinal designs provide a wealth of information, especially on predictive associations 

over development, such studies do not provide evidence on underlying causal relationships per se. To 

inform us to some extent on the predictive power of different processes for arithmetic performance and 

development, and vice versa, a panel longitudinal design is essential, as such designs allow for the 

inclusion of autoregressive effects. Autoregressive effects are the effects a process has on itself 

measured at a later time, and thus describe the stability of individual differences in a process from one 

time point to the next (Selig & Little, 2012). The inclusion of the autoregressive effects means that the 

variance in a process at a later time point (e.g. T2) that can be predicted by another process at T1, is 

residual variance controlling for previous levels of the outcome measure. Controlling for prior 

performance is necessary to avoid that concurrent correlations between processes at both time points 

confound the investigated predictive associations. Given the high stability of the processes investigated 

in the current dissertation, including autoregressive effects was an important strength of our design. This 

was nicely demonstrated in the context of the predictive association between metacognitive monitoring 

and arithmetic. Without considering autoregressive effects, both processes were predictive of each other 

at a later time point. When considering autoregressive effects, only strong evidence was found for a 

predictive role of prior arithmetic performance for later metacognitive monitoring, while the predictive 

power of metacognitive monitoring for later arithmetic performance was unclear. These results further 

confirmed the pivotal role of academic performance. 

It is important to note that using autoregressive effects to investigate directionality of predictive 

associations also comes with certain limitations. For example, when autoregressive effects are very high, 

as was the case in this dissertation, explaining residual variance is very difficult. Furthermore, when 
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processes co-occur, autoregressive effects may account for the variance explained by the co-occurring 

process. For example, metacognitive monitoring processes and mathematics anxiety co-occur with 

solving arithmetic problems. A measure of arithmetic might thus already capture individual differences 

in metacognitive monitoring and mathematics anxiety. These individual differences in metacognitive 

monitoring and mathematics anxiety may thus be reflected in the autoregressive effect of arithmetic, 

which confound the investigated predictive associations. Taken together, in order to make strong claims 

on causality, even longitudinal panel designs do not provide conclusive evidence. In that case 

experimental studies are required, such as intervention and/or training studies.  

Future experimental studies can build on the presented correlational studies which demonstrated the 

interplay between and the importance of the different investigated processes. For example, instead of 

examining the extent to which metacognitive monitoring is related to arithmetic performance, future 

studies should investigate the question as to whether and how metacognitive monitoring causes gains in 

arithmetic performance and learning, by investigating the effect of fostering metacognitive monitoring 

on performance. Broad interventions focused on improving metacognitive knowledge and skills more 

generally in the context of mathematics education have already shown promising effects (see Schneider 

& Artelt, 2010, for a short overview; Dowker, 2019b), yet, it is not always clear which aspects of such 

programs have been successful and “more research is needed on exactly which aspects of metacognition 

are important here” (Dowker, 2019b, p. 299). The findings of the current dissertation plea to specifically 

investigate how metacognitive monitoring may improve arithmetic. For example, researchers can 

include a forced metacognitive monitoring component within a training paradigm in which arithmetic 

items are presented and feedback on the correctness of the answer is given. The effect of including a 

metacognitive monitoring component in an arithmetic training can then be investigated. Based on the 

findings of Butler et al. (2008) that feedback is especially helpful for low confidence responses, 

requiring children to explicitly give metacognitive judgments may efficiently promote learning. In the 

existing literature, promising evidence in adults is found that training of metacognitive monitoring 

results improves learning (e.g. Dunlosky et al., 2003). It remains to be determined whether such findings 

can be generalized to children and to the learning of arithmetic. 

Another important consideration in the context of our research on the correlates of individual 

differences in arithmetic performance and development, is the difference between processes that are a 

prerequisite for doing arithmetic versus processes that drive individual differences. Indeed, children rely 

on several (cognitive) processes when solving arithmetical problems, and, as such, a certain skill level 

in these processes is needed to perform that task. Once that skill level is reached, which, in typically 

developing children, may be the case for several processes that are important for arithmetic, it is 

plausible that these processes may not explain additional variance in arithmetic performance. For 

example, our results indicated that inhibition, shifting, and (to a lesser extent) updating did not 

predictively explain individual differences in arithmetic. Yet, this does not imply that these processes 
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are unimportant for arithmetic. It is likely that a certain level of executive functioning skills is a 

prerequisite or cognitive support for good mathematics learning. As the participants in our studies were 

all typically developing children in primary school, this level was probably reached for most of them. 

The role of support processes in arithmetic performance and development may become more clear either 

by using a more experimental approach, for example, by using dual-task designs that manipulate 

working memory (e.g. De Rammelaere et al., 2001) or by studying children with deficits in these support 

processes, such as children with ADHD, who show deficits in executive function. 

 

5 Multiple processes, complex interactions 

The current dissertation studied arithmetic performance and development in the context of different 

cognitive, metacognitive and affective processes, and at different ages in primary school. It is important 

to acknowledge the complexity of on the one hand, the processes in themselves, and on the other hand, 

their interrelations. 

 A critical strength of the current dissertation was bringing together different cognitive, 

metacognitive and affective processes in the investigation of performance and development in 

arithmetic. It is important to note that a long tradition of research has studied these different processes 

in isolation and as a result, extensive bodies of research exist on each of these different processes. Within 

each of these separate bodies of research, the complexity of the studied processes has been amply 

demonstrated. For example, most of the studied processes in the current dissertation are multi-faceted 

constructs, covering different aspects of an overarching process. For instance, executive functions 

encompass different components, such as inhibition. In turn, inhibition encompasses different aspects 

including cognitive and behavioural inhibition (Diamond, 2013). The same is true for metacognition, a 

broad concept covering declarative metacognitive knowledge as well as procedural metacognition. In 

turn, declarative knowledge encompasses knowledge on person, task and strategy aspects (Flavell, 1979) 

and procedural metacognition encompasses both monitoring and control processes (Nelson & Narens, 

1990). In light of the topic of this dissertation, it is thus important to keep in mind that different aspects 

of the studied processes within this dissertation may have varying levels of involvement in different 

aspects of arithmetic. 

Adding to this complexity, several of the studied processes within this dissertation have been 

investigated from the viewpoint of different research traditions, such as cognitive psychology or 

educational sciences. Their approaches to investigate these processes, namely the conceptualisation of 

the processes and the operationalisation of the processes in performance measures, substantially differ 

between different research traditions. For example, metacognition has been studied from the viewpoint 

of not only educational research traditions (e.g. Schneider & Artelt, 2010; Schoenfeld, 1992), but also 

in cognitive experimental research (e.g. Rahnev & Fleming, 2019), resulting in different research 
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approaches such as observational methods, thinking-aloud protocols, questionnaires or strict 

experimental tasks investigating feeling of correctness.  

The complexity of the investigated processes within this dissertation is also apparent in the 

complicacy of their interplay in the context of arithmetic performance and development. As stated by 

Ann Dowker (Dowker, 2019c, p. 4) “Any statement that arithmetic ability is purely the product of a 

single factor is oversimplified”. In line with the approach within the current dissertation, it is thus 

essential to investigate different processes in concert when investigating arithmetic performance and 

development, because a multitude of processes have an impact on arithmetic. The findings of this 

dissertation indeed highlight the importance of such an approach, as I was able to isolate the unique 

contribution of different processes to arithmetic performance and development over and above each 

other. The uniqueness of such contributions can only be established if a multitude of processes is 

investigated. 

In sum, performance in and development of arithmetic is rooted in a complex interplay of processes, 

reaching further than the specific processes investigated in the current doctoral thesis. Furthermore, 

these processes themselves are also complex and multi-faceted. Studies focussing on specific aspects of 

this complex puzzle, such as the ones presented in the current dissertation, are quintessential. They 

functionally unravel specific associations and underlying mechanisms, and, as such, contribute 

important pieces to the puzzle. Yet, one should not forget these pieces are only one part of the complex 

puzzle. 
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Educational considerations 

Research on the correlates of arithmetic performance and development has the longstanding aim to 

help to develop effective instructional approaches and to contribute to designing evidence-informed 

remediation programs for children at risk for or with difficulties in arithmetic. In line with this aim, the 

findings of the current dissertation do not only help to refine theoretical frameworks on the correlates of 

arithmetic, as was discussed above, but might also be useful for the educational practice. Both science 

and education benefit from a good understanding of the processes that underlie the development of 

arithmetic in primary school children. Such an understanding may provide insight into processes as 

targets for instructional approaches as well as for training and intervention studies. Because all the 

included studies in this dissertation investigated the interplay of several processes in arithmetic in a 

crucial developmental period, they may provide a step towards (further research on) such evidence-

informed approaches in education in a crucial period for fostering learning. 

Based on the findings of this dissertation, a possible process to focus on in interventions is 

metacognition. On the one hand, metacognitive knowledge might be a fruitful target to enhance, even 

in young primary school children, as it emerged as the strongest predictor of arithmetic development in 

our studies. Teaching children about what factors (inter)act to affect their academic performance, for 

example by teaching them the difference between recognizing versus remembering as a learning 

strategy, may enhance later performance (Flavell, 1979). On the other hand, throughout all studies within 

this dissertation, metacognitive monitoring was found to be a strong, unique correlate and predictor of 

arithmetic performance. Based on this consistent finding, it might be relevant to include a metacognitive 

monitoring element in educational technology and serious games (e.g. Rekentuin; Van der Maas et al., 

2014). For example, this could be done by, after solving an arithmetic item in such a game, asking 

children to indicate their confidence in their answer in a similar way to what was done in the current 

dissertation. Such a manipulation of the arithmetic learning process might be interesting in the light of 

our findings on the role of metacognitive monitoring in arithmetic and the fact that feedback after 

performance is especially helpful for low confidence responses (Butler et al., 2008).  

Our findings concerning the suggested emergence of more domain-general metacognitive monitoring 

in academic domains over second to third grade of primary school may be relevant for thinking about 

how to stimulate metacognitive monitoring at different ages. More specifically, when educators want to 

promote metacognitive monitoring in children in itself or promote metacognitive monitoring to enhance 

academic learning, knowing whether metacognition is rather domain-specific or domain-general, and 

when domain-generality emerges, is of importance. This might impact how educators best provide 

instructions in metacognitive monitoring, namely for each task or domain separately (i.e. domain-

specific metacognition) or concurrently in different tasks and domains (expecting it to transfer to new 
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domains; domain-general metacognition). The findings of Chapter 5 show that there might be a tipping 

point between second and third grade. It is important to note that in the development of metacognition, 

parents and teachers may have a pivotal role, both by means of explicit instruction as well as modelling 

of behaviour. For example, Veenman et al. (2006) argue that the vast majority of students spontaneously 

pick up metacognitive knowledge and skills from their peers, parents and teachers. Roebers and Feurer 

(2016) state that parents’ support to actively construct interpretations of mental states may foster 

procedural metacognitive development. In a large meta-analysis, Hattie (2009) referred to modelling 

metacognitive knowledge and skills as one of the most important skills in teachers. Furthermore, the 

British Education Endowment Foundation (n.d.) ranked the teaching of metacognition as one of the most 

successful educational interventions. In line with the results of Chapter 5, enhancing metacognitive 

monitoring in young primary school children may best be done in a domain-specific manner, hence in 

different courses separately, and transfer of these metacognitive monitoring skills is not to be expected 

at this young age. Yet, starting in third grade, this enhancing of metacognitive monitoring may be more 

domain-general and transfer may be expected. Further research is needed to investigate these 

suggestions. 

It is also relevant for the educational practice to note that our findings demonstrate a pivotal role of 

academic performance, not only for later academic performance and development, as demonstrated in 

the very large autoregressive effects, but also for other metacognitive and affective processes. For 

example, we found that early arithmetic performance predicted both later metacognitive monitoring 

skills and later mathematics anxiety. Our results thus suggest that it is relevant to take performance level 

into account in development of metacognitive monitoring and mathematics anxiety. Enhancement of 

performance and domain-specific skills are likely crucial to further development of other processes such 

as metacognition, or to prevent (further) development of mathematics anxiety. Importantly, the current 

dissertation demonstrated an increasing role of mathematics anxiety in both arithmetic performance and 

metacognitive monitoring. As such, our results plea for careful detection of (early) signs of mathematics 

anxiety to prevent the potential vicious spiral of reinforcement between mathematics anxiety and 

difficulties with mathematics achievement and/or metacognitive monitoring. This might be especially 

important given society’s increasing reliance on standardized testing and the detrimental impact of 

mathematics anxiety in such test situations. 

The findings of the current dissertation might be particularly relevant for struggling learners, as they 

experience severe difficulties with arithmetic, and metacognitive abilities may have an important role in 

this learning process. It is important to note that the current dissertation and most of the existing body 

of research that investigated the role of metacognition in arithmetic has focused on typically developing 

children (but see Desoete & Roeyers, 2002). However, a substantial proportion of children present with 

dyscalculia, a neurodevelopmental learning disorder that is characterized by life-long difficulties in 
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calculation that are not merely explained by intellectual disabilities, uncorrected sensory problems, 

mental or neurological disorders or inadequate instruction (American Psychiatric Association, 2013). 

Given the relative high prevalence of dyscalculia (i.e. around 7%; Butterworth, 2011; Peters & Ansari, 

2019), it is important to determine whether the findings of the current dissertation also hold for these 

struggling learners. In one of the few studies on this topic, Rinne and Mazzocco (2014) demonstrated 

poor metacognitive monitoring in children with dyscalculia. However, they used an extremely small 

sample size of children with dyscalculia (n = 16), and the authors critically emphasized that replication 

of this finding was crucial. Future studies should thus investigate the role of metacognition in arithmetic 

in children with dyscalculia. Understanding these children’s metacognitive knowledge and skills, which 

could either act as a risk or protective factor, and their interrelation with arithmetic, might provide a 

critical ground for the development of remedial interventions. 

It is important to note that, in Flemish primary school, substantial gender gaps are found for 

mathematics performance (Kabinet Vlaams minister van Onderwijs, 2017), an observation that is 

applicable to many countries around the globe (Stoet & Geary, 2018). Such gender differences are also 

found in research on mathematics anxiety, even in primary school (Hill et al., 2016) and in self-

confidence in mathematics, as was demonstrated in an extensive research report on the development of 

math capabilities and confidence in primary school (Nunes et al., 2009). Furthermore, lack of confidence 

has often been suggested to be the reason for the continued gender segregation in (higher) mathematics 

education and careers in mathematics-related fields (e.g. Hackett, 1985). This is especially worrisome 

when low confidence is not in accordance with actual performance, which consequently reflects poor 

metacognitive monitoring. As mathematics anxiety, self-confidence in mathematics and metacognition 

all involve thinking about one’s own performance, gender differences are also likely present in, for 

example, children’s metacognitive monitoring. Against this background, future studies should further 

examine whether gender plays a role in metacognitive knowledge and skills and whether these potential 

differences moderate the findings of the current dissertation. 

While the current dissertation focused on characteristics that are more inherent to the child, the 

environment also influences a child’s arithmetic performance and development. This is often overlooked 

when interpreting research findings, as we compare and build on the research findings of studies 

conducted all around the world, abstracting from, for example, the educational context in which children 

are learning arithmetic or the values of the society children grow up in. It is thus important to note that 

all studies in this doctoral dissertation were performed in participants in Flanders who all received 

formal schooling in the Flemish educational system. This may impact on, for example, the way 

arithmetic strategies are introduced and learned. A cross-cultural design, contrasting different 

educational approaches, maybe useful to examine whether cultural differences are found in the interplay 

of processes investigated in the current dissertation. 
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Within this dissertation, I have focused on arithmetic, a crucial aspect of mathematics. However, it 

is important to note that “There is no such thing as arithmetic ability, only arithmetic abilities” (Dowker, 

2019c, p1): Arithmetic is made up of many components. I have mostly investigated arithmetic fluency 

by accuracy and response time measures and by using the Tempo-test Arithmetic, which combines the 

two. However, learning arithmetic also includes components such as understanding of arithmetic 

principles and computational estimation. Future research should further specify our findings by 

examining the interrelations between these other components of arithmetic and the investigated 

cognitive, metacognitive and affective processes. It may be especially interesting to investigate the 

association between metacognitive monitoring and computational estimation (e.g. Dowker, 2019a), as 

higher uncertainty level in the arithmetic task may have an impact on the association between 

performance on that task and metacognitive monitoring. 
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General Conclusion 

Performance in and development of arithmetic is rooted in a complex interplay of processes. This 

dissertation added one piece to the complex puzzle that performance and development of arithmetic in 

children consists of by addressing important gaps in the existing literature, emphasizing the role of 

metacognition. In short, the main findings of this dissertation were 1) Numerical magnitude processing, 

executive functions and metacognition are each uniquely associated to arithmetic performance in 

primary school children; 2) Numerical magnitude processing and metacognition have unique predictive 

roles for later arithmetic, yet prior arithmetic performance remains the most robust predictor for later 

arithmetic performance; 3) The association found between metacognitive monitoring and arithmetic in 

primary school children is not affected by mathematics anxiety; 4) A transition from domain-specificity 

of metacognitive monitoring towards domain-generality of metacognitive monitoring in academic 

performance seems to occur between the age of 7 to 9 years; 5) Metacognitive monitoring in children is 

related to the left inferior frontal gyrus (IFG), suggesting an overlap with the arithmetic brain network. 

It is essential to recognize that we are still left with many outstanding questions in need of answers. By 

building on the existing literature, including the current dissertation, and through future research 

investigating multiple processes simultaneously, combining multiple methods such as behavioural and 

brain-imaging techniques, using different study designs such as cross-sectional, longitudinal and 

experimental methods, and studying children across ages, cultures, educational systems and 

demographic groups, we can further our understanding of the complexity of individual differences in 

this critical skill that is arithmetic. This understanding is not solely essential for academic purposes, but 

has crucial practical implications as well, paving the way for improving future perspectives for the 

learning child. 
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